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Abstract

This year, the PicSOM team participated only in the Video to Text Description (VTT), Description Generation subtask. In total,
the PicSOM team submitted four runs. We had two goals in our submissions, first, to study the performance of our recent
developments in the architectures of the captioning model, and second, to see the effect of using the VATEX dataset in model
training. The submitted four runs are as follows:
• PICSOM.1.PRIMARY: Our latest and best stacked attention model, trained with three datasets.
• PICSOM.2: Model architecture similar to our best VTT 2019 submission, trained with three datasets.
• PICSOM.3: Another well-performing stacked attention model, trained with two datasets.
• PICSOM.4: Model architecture similar to our best VTT 2019 submission, trained with two datasets.
The runs aim at comparing different implementations of stacked attention on the visual features and the benefit from using the
VATEX dataset. Based on our results we can conclude that the use of the VATEX dataset had more effect on the improvement of
the results than the stacked attention, which also produced small but noticeable improvement. Based on the results of the runs, it
seems that our latest attention model combined with self-critical reinforcement learning was the best approach.

I. INTRODUCTION

In this notebook paper, we describe the PicSOM team’s
experiments for the TRECVID 2020 evaluation [1]. We par-
ticipated only in the Video to Text Description (VTT) subtask
Description Generation. Our approaches are variations of the
“Show and tell” model [2], augmented with a richer set
of contextual features [3] and self-critical training [4]. The
captioning models are described in more detail in Section II
and their used training loss functions in Section III. Then, we
describe the features in Section IV and the datasets used for
training in Section V. In Section VI we intoduce our stacked
attention model. Our experiments, submitted runs and results
are discussed in Section VII and conclusions are drawn in
Section VIII.

II. DEEPCAPTION NEURAL CAPTIONING MODEL

The PicSOM team’s LSTM [5] model has been imple-
mented in PyTorch and is available as open source.1 The
features are translated to the hidden size of the LSTM by
using a fully connected layer. We apply dropout and batch
normalization [6] at this layer. As the loss function, we
similarly use cross entropy, in addition to Reinforcement
Learning with self-critical loss function [4] in order to fine-
tune a well-performing model. The fine-tuning is implemented
either by switching to the self-critical loss in training time or
by specifying a pre-trained model to load and fine-tune.

III. TRAINING LOSS FUNCTIONS

In order to train the architecture so that its output distribu-
tion approximates the target distribution at each decoding step

1https://github.com/aalto-cbir/DeepCaption

t, several optimisation objectives are used. Recent progress on
sequence training enables new optimisation paradigms, which
are applied and compared in this work.

A. Cross-entropy

Traditionally, the teacher forcing algorithm [7] is the most
common method to maximise the log-likelihood of a model
output X to match the ground truth y = {y1, y2, · · · , yT }. It
minimises the cross-entropy objective

LCE = −
T∑
t=1

log pθ (yt | yt−1,ht−1, X) , (1)

where ht−1 is the hidden state of the RNN from the previous
step and pθ the probability of an output parametrized by θ.
In the inference time, the output can be produced simply by
greedy sampling of the sequence being generated.

B. Self-critical

Lately, Reinforcement Learning ideas have been used to op-
timise a captioning system based on recurrent neural network
language models. Such a system can be seen as an agent taking
actions according to a policy πθ and outputting a word ŷt as
an action.

One proposed approach is the self-critical algorithm [4],
where the output at inference time of the model ŷgi,t is used,
normally applying greedy search. The sequences are scored
using a reward function r. Thanks to the properties of this
optimisation, NLP metrics can be used as reward to affect
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the actual loss. In our case, CIDErD [8] is used. The final
objective reads

Lθ = 1
N

∑N
i=1

∑
t log πθ (ŷi,t | ŷi,t−1, si,t,hi,t−1)

·
(
r(ŷi,1, · · · , ŷi,T )− r(ŷgi,1, · · · , ŷ

g
i,T )
) . (2)

IV. FEATURES

Table I summarizes the features used in our experiments
and their dimensionalities.

TABLE I
SUMMARY OF THE FEATURES USED IN OUR EXPERIMENTS.

abbr. feature dim. modality
rn ResNet-152 2048 image
i3d I3D 2048 video

fake-i3d Fake I3D 2048 image

A. ResNet-152
We are using pre-trained CNN features from ResNet-152

so that the 2048-dimensional features from the pool5 layer
averaged across five crops from the original and horizontally
flipped images. When applied to a video object, we have used
the middlemost frame of the video.

B. I3D
To encode video features, we adopted Inflated 3D Convolu-

tional Network (I3D) [9]. It builds upon already competent
image recognition models (2D) and inflates the filters and
kernels to 3D, thus creating an additional temporal dimension.
Concretely, the base network used is ImageNet-pretrained
Inception-V1 [10] using two streams [11]. The videos were
first resampled to 25 frames per second as in the original
I3D paper and 128 frames were taken from the center. For
DeepCaption, the extractor is applied convolutionally over the
whole video and the output is average-pooled in order to
produce a 2048-dimensional feature vector.

C. Fake I3D
When we used still images of the COCO dataset for training

a captioning model, we naturally were not able to extract and
use I3D features for those images. Therefore we had calculated
the average value of the I3D feature vectors in the TGIF
dataset and used that vector as a “fake I3D” feature for all
COCO images.

V. TRAINING DATA

Table II gives a summary of the databases and the features
we have extracted for them. In Tables II and III, we have
shortened the dataset names with one letter abbreviations.

A. COCO
The Microsoft Common Objects in COntext (MS COCO)

dataset [12] has 2,500,000 labeled instances in 328,000 im-
ages, consisting on 80 object categories. COCO is focused on
non-iconic views (or non-canonical perspectives) of objects,
contextual reasoning between objects, and precise 2D local-
ization of objects.

TABLE II
SUMMARY OF THE TRAINING DATASETS USED IN OUR EXPERIMENTS.

dataset items captions features
C COCO 82,783 img 414,113 rn fake-i3d
T TGIF 125,713 vid 125,713 rn i3d
V VATEX 41,250 vid 825,000 rn i3d

B. TGIF

The Tumblr GIF (TGIF) dataset [13] contains 100,000
animated GIFs and 120,000 natural language sentences. This
dataset aims to provide motion information involved between
image sequences (or frames).

C. VATEX

As an addition to the training datasets we have used earlier,
we have now started to use the new VATEX video captioning
dataset [14]. VATEX contains over 41,250 videos and 825,000
captions in both English and Chinese.

VI. STACKED ATTENTION

Figure 1 shows the overall architecture of DeepCaption’s
new caption generation model. The visual features and cap-
tions are treated as inputs to the encoding and decoding
layers, and the last output of the decoding layers are processed
by an LSTM. All the outputs from the decoding layers are
collected and used to attend the representations generated by
the recurrent language model to produce the output words.
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Fig. 1. The architecture of DeepCaption’s new stacked attention model.

The stacked attention model is based on the Transformer
model [15], in which the intra- and cross-relations between
the visual and the text features are calculated via scaled
dot-product attention. The attention function receives three
sequential sets with length s, and dmodel dimensions, denoted
as queries Q, keys K, and values V . The attention function is
defined as

Attention(Q,K, V ) = softmax(
QKT

√
dmodel

)V , (3)

where Q ∈ Rs×dmodel is a matrix of query vectors and K
and V ∈ Rs×dmodel are matrices of key and value vectors.
Given a set of features from videos, intra-modality attention
is obtained in the encoder with self-attention on the different



feature inputs. Cross-modality dependencies are modeled in
the decoder via cross-modal attention operations between the
visual and textual features. Multihead attention is employed
for improving the feature representation and with k heads it
is formulated as

Multihead(Q,K, V ) = concat(h1, . . . , hk)W
O (4)

hi = Attention(QWQ
i ,KWK

i , V WV
i ) (5)

i = 1, . . . , k ,

with matrices WQ
i ∈ Rdmodel×dmodel/k, WK

i ∈
Rdmodel×dmodel/k and WV

i ∈ Rdmodel×dmodel/k used in each
of the k attention heads, and WO ∈ Rdmodel×dmodel .

In our stacked attention model, we have used the depth of
N = 3 layers, as seen in Figure 1. Both the encoding and de-
coding layers are stacked sequentially. The stack of N encod-
ing layers generates multi-level outputs X = (X1, . . . , XN )
which are used as the key and value inputs, K and V, of
the cross-modal attention in each corresponding decoder. The
query inputs Q come there from the word embeddings of the
caption. The multi-level cross-modal relations of visual and
textual features provide refined inputs for the attention on the
recurrent language model. The decoding layers depend on the
visual features and the previously generated words. We collect
them and exploit the outputs level by level.

The stacked attention mechanism always uses the decoder
output Y N−j+1 to attend the attention-stacked LSTM output
Zj . First, with j = 1 and given the decoder output Y N

and the LSTM output Z1, the stacked attention mechanism
concatenates Y N and Z1 and transforms them linearly to the
same dimension with Z. The stacked attention is then defined
as element-wise or Hadamard product

StackedAttention(Y N−j+1, Zj) = α(Y, Z)� Z , (6)

where we have dropped the superscripts on the right for
clarity and α(·, ·) is a function that generates a element-wise
multiplication matrix which has the same dimensions as Z.
The function α(·, ·) is defined as

α(Y,Z) = σ(W [Y,Z] + b) , (7)

where [·, ·] stands for concatenation, σ(·) is the sigmoid
function, and W and b are the weight and the bias. The stacked
attention for the full sequence of LSTM outputs is then formed
by applying the attention (6) sequentially with j = 1, . . . , N .
As can be seen in Figure 1, we have additionally utilized a
skip connection from the LSTM output Z1 to Z3.

Word-level cross-entropy (XE) is used to pre-train the
model, which is then fine-tuned via reinforcement learning.
During the XE training, the model predictions are conditioned
on the previous annotated words. Training with reinforcement
learning employs the self-critical (SC) [16] training method.
During the decoding, both greedy and stochastic samples of
the output sequences are used at each time step. We employ
the CIDEr-D [17] score as the reward of the SC reinforcement

learning. The reward is baselined by a greedy sample rather
than the mean of rewards. The gradient is then defined as

∇θL(θ) = −
1

M

M∑
i=1

(
(r(wi)− r(ŵ))∇θ log p(wi)

)
, (8)

where wi is the i-th stochastic sample in a batch, ŵ is the
greedy search sample and r(·) is the CIDEr-D reward function.
When predicting, we perform greedy search and keep words
with the highest predicted probabilities within the vocabulary.

VII. EXPERIMENTS AND RESULTS

During the development stage, we mostly kept the selection
of the trainig datasets and features fixed and concentrated on
selecting the best model architecture and training straregy. We
evaluated our results using the previously released ground truth
of TRECVID VTT 2018 test set. The four runs submitted are
identified as “s1” to “s4” in Table III.

Our four runs were mutually different fromeach other in the
following:

• s1: Our latest and best stacked attention model, trained
with all three dtasets: COCO, TGIF and VATEX.

• s2: Model architecture similar to our best VTT 2019
submission, trained with all three datasets.

• s3: Another well-performing stacked attention model,
trained with two datasets: COCO and TGIF.

• s4: Model architecture similar to our best VTT 2019
submission, trained with two datasets: COCO and TGIF.

Based on evaluation on the TRECVID VTT 2018 and 2019
test sets, we ended up using a 2-layer LSTM for DeepCaption
with an embedding vector size of 512, and 1024 for the
hidden state dimensionality in all PicSOM team’s runs. Both
in the input translation layer and in the LSTM we applied a
dropout of 0.5. We used Adam optimiser [18] for the self-
critical stage with a learning rate of 5× 10−5 and no weight
decay. Additionally, gradient clipping is performed when a
range [−0.1, 0.1] is exceeded. The models were pretrained
using centered RMSprop [19] with a learning rate of 0.001
and weight decay (L2 penalty) of 10−6.

Our results compared to those of the other submitted runs
are visualized with bar charts for each automatic performance
measure in Figures 2–7.

VIII. CONCLUSIONS

There were two main research questions in the PicSOM
team’s set of four submissions. We wanted to see the benefit
we could get from our novel stacked attention model in our
DeepCaption captioning system. The results with the stacked
attention model were quite systematically better than those
without it, but the advantage was quite limited. We also
studied, how much the intriduction of the VATEX dataset as
an additional training data to COCO and TGIF improved the
results. In this case the positive effect was clear and our results
were clearly improved from the performance level where we
were in the last year’s submissions.



TABLE III
RESULTS OF OUR SUBMISSIONS S1,. . . ,4.

2020
id METEOR CIDEr CIDErD BLEU SPICE STS
s1 0.2617 0.319 0.200 0.0527 0.079 0.4407
s2 0.2556 0.312 0.191 0.0536 0.076 0.4290
s3 0.2414 0.278 0.129 0.0485 0.069 0.4507
s4 0.2323 0.278 0.124 0.0201 0.067 0.4437
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Fig. 2. METEOR results of the PicSOM team and others.
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Fig. 3. CIDEr results of the PicSOM team and others.
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