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ABSTRACT
Dense captioning (DC), which provides a comprehensive context
understanding of images by describing all salient visual groundings
in an image, facilitates multimodal understanding and learning.
As an extension of image captioning, DC is developed to discover
richer sets of visual contents and to generate captions of wider
diversity and increased details. The state-of-the-art models of DC
consist of three stages: (1) region proposals, (2) region classification,
and (3) caption generation for each proposal. They are typically
built upon the following ideas: (a) guiding the caption generation
with image-level features as the context cues along with regional
features and (b) refining locations of region proposals with cap-
tion information. In this work, we propose (a) a joint visual-textual
criterion exploited by the region classifier that further improves
both region detection and caption accuracy, and (b) a Geometry-
aware Relational Exemplar attention (GREatt) mechanism to relate
region proposals. The former helps the model learn a region classi-
fier by effectively exploiting both visual groundings and caption
descriptions. Rather than treating each region proposal in isolation,
the latter relates regions in complementary relations, i.e. contextu-
ally dependent, visually supported and geometry relations, to enrich
context information in regional representations. We conduct an
extensive set of experiments and demonstrate that our proposed
model improves the state-of-the-art by at least +5.3% in terms of
the mean average precision on the Visual Genome dataset.
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1 INTRODUCTION
Advancements in computer vision applications, such as object de-
tection and segmentation, have laid a strong foundation of com-
prehensive context understanding in images. Besides learning on
visual domain, tasks such as image captioning (IC) [3, 7, 24] and
visual question answering (VQA) [1] are the iconic examples that
connect vision and language modalities to not only provide better
visual reasoning, but also enable multimodal context understanding.
The IC task is to generate a human understandable sentence from a
given image. Such a sentence should be grammatically correct, ade-
quately expressive, and capture holistic view of the image content.
The VQA task is to generate a sentence to answer a given question
targeting at an image. While such a multimodal model (e.g. an IC
model) is able to describe an image, it continues to express varying
image contents with a sentence that can hardly capture multiple
perspectives of the image content.

To extend the capability of a captioning model, Johnson et al.
introduced the Dense Captioning (DC) task where the aim is to
describe as many as possible regions of interest (RoIs) in an image
[9]. More specifically, DC comprises two joint tasks: (a) localizing
the RoIs (e.g. by bounding boxes) and (b) generating a sentence
describing each grounded region. These tasks introduce two more
challenges to image captioning: (1) detecting and proposing mean-
ingful ROIs for captions and (2) understanding the relations between
the region proposals. For example, in Figure 1, two visual ground-
ings surrounding the man are closely related in visual contents and
captions. Besides, the larger RoI surrounding the whole body of the
man provides the most informative context for the smaller RoI cap-
tioned with "blue jeans of man". This indicates that the captioning
process can benefit from a DC model that is capable of capturing
relationships between regions.

We address the aforementioned challenges by (1) introducing a
joint visual-textual criterion for detecting RoIs and (2) proposing a
Geometry-aware Relational Exemplar attention (GREatt) module
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Figure 1: An instance in the Visual Genome dataset [11]
that reveals how the visual and caption information from
other regions can be particularly informative to some re-
gions. Here, the informative context for region captioned
with blue jeans of man is the region captioned with man
playing guitar on street, which is cued by the street area cap-
tioned with leaves scattered on sidewalk and street.

for capturing relations between the RoIs. Utilizing the caption em-
bedding along with the visual representations enforces the model
to learn a better alignment between the visual content and the
corresponding captions by projecting them into a shared subspace.
Simultaneously, the optimality of the proposed RoIs is improved.
GREatt accounts for three intrinsically distinct types of region-
level relationships, including (a) spatially correlated, (b) contextually
dependent, and (c) visually similar and supported relations. The
spatially correlated relation considers regions that are correlated
by their locations and sizes. The contextually dependent relation
considers if a region provides contextual information for another
region. The visually similar and supported relation focuses on visu-
ally similar contexts to enhance the evidence of the existence of a
specific context.

To summarize, our contributions are (1) a new geometry-aware
relational exemplar attention module and (2) a joint visual-textual
region classification criteria. which together lead to a new state-of-
the-art in the dense captioning task.

2 RELATEDWORK
2.1 Image Captioning
Understanding image captioning is essential because it is the funda-
mental building block of any captioning pipeline. We, thus, briefly
overview some of the most relevant works and refer the readers
to [7] for further reading.

The classical image captioning methods such as [3] relied on
linking a sentence to an image via feature mapping and were limited
to retrieving a pre-existing sentence from a corpus of sentences.
The techniques which utilize a language model, however, show
more flexibility in generating a sentence from a feature vector
representing the image. The most successful of such methods are
neural-based techniques [10, 16, 21]. Many of the recent image
captioning pipelines follow a similar path.

The most relevant works to us are, in particular, the attention-
based image captioning methods. For example [24] defined a soft-
attention mechanism (also known as top-down attention) that

learns to align the visual features with textual features dynamically
over time while generating a sentence. Pedersoli et al. [13] extended
the same idea by employing geometrical transformations to the
regions used for captioning. The top-down attention mechanism
often loses its effectiveness after the visual features are fine-tuned
for the captioning task [13]. In contrast to the top-down mecha-
nism, R. Tavakoli et al. [18] investigated the bottom-up attention
mechanism. While they demonstrated that bottom-up attention
cannot help much improving the caption qualities, they showed
such a mechanism enhances the robustness of captioning models.
Recently, He et al. [6] proposed an effective approach for combining
both bottom-up and top-down attention.

Our proposed approach follows a similar path to attention-based
image captioning, specifically using top-down attention. Neverthe-
less, we focus on dense captioning and try to encode the relations
between regions for building powerful context features.

2.2 Dense Captioning
Dense captioning was introduced along with the Visual Genome
dataset [11], which aims to promote vision and language research in
conjunctions with a range of perceptual reasoning and question an-
swering tasks. The dataset provides 5.4 million region annotations
with bounding boxes and captions for 108,077 images, averaging ~50
annotations per image.

The first dense captioning model was introduced by the pio-
neering work of Johnson et al. [9]. Their framework consists of
three components: (1) an image feature extractor (e.g. implemented
by a VGG net [17]), (2) a region detector, and (3) a caption gener-
ator. Given an image, it first projects the image into the feature
space. Then, it detects a series of RoIs using the region proposal
mechanism. Finally, each RoI is described with a sentence using
the caption generator language model based on recurrent neural
networks (RNN) [12] and image features corresponding to that
RoI. They tested their model on Visual Genome version 1 [11] and
established the first baseline for this task.

Yang et al. [26] extended the idea by replacing the localization
layer with Faster-RCNN [14], using captions for improving the
localization of region proposals generated by Faster-RCNN, and
exploiting both regional and image-level features for the language
model. They demonstrated that each of these modifications and
their combinations significantly improve the dense captioning.

Nevertheless, image-level features as context can mislead the
caption generator towards describing the global context rather than
the region of interest [26]. In contrast, our proposed GREatt mech-
anism learns the context features from the proposed regions by
considering distinct types of pairwise relationships between the
RoIs. Hence, our pipeline uses features which are more contextu-
ally dependent yet region-specific and improve caption quality. In
addition, to further capitalize on the idea of engaging captions in
the proposal process, we propose a region classifier (which deter-
mines the likelihood of a proposal being a genuine RoI) learned
on a subspace shared by textual features and their visual counter-
parts. Developing these two novel designs on top of the pipeline
proposed in [26] further enhances the performance in both region
classification and caption generation.
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2.3 Attention and Relation Reasoning
Reasoning about the relation of two feature vectors which represent
objects, entities, and elements with neural networks has gained
a recent interest and has been a core module in wide range of
applications, such as image captioning [27], object detection [8], and
visual question answering (VQA) [15], and scene graph generation
(SGG) [23, 25].

Many existing works have proposed different means to associate
two feature vectors (e.g. vi and vj ) and capture their mutual impor-
tance as αi, j . Introducing the notion of importance, one can link
relation reasoning to attention and interpret αi, j as a quantity of
how much one should also pay attention to vj during inference
about vi given a task. The most notable work for our purpose in
this annals is transformer networks [19] (originally for natural lan-
guage processing (NLP) tasks) in which the attention weights are
defined by the function of scaled dot-product (SDP) between vi and
vj , emphasizing similarity of representations.

In the context of object detection, Hu et al. [8] proposed a revised
SDP attention, which additionally considers the geometry relation-
ship between object proposals, allowing them to be refined and
classified jointly rather than in isolation. Yao et al. [27] constructed
a directed graph over the object proposals, in which each node of
the graph is represented by the visual features of the proposals, in
order to do image captioning. The refined object-level represen-
tation which embeds with the graph structure is then calculated
through graph convolutional networks (GCN). Yang et al. [25] cap-
italized on a similar idea to relate the region proposals for scene
graph generation.

Two other relevant ideas are graph attention networks [20] and
Neural Turing Machine [4]. The first one was originally proposed
for the graph classification task, and in it two features interact
through concatenation followed by a multi-layer perceptron (MLP).
The second one extends the same line of research with external
memory modules and employs the cosine similarity function to
capture the interaction between entities.

Even though many works have proposed different attention
mechanisms for the downstream tasks, most of them learn the
attention embodied by single relation (e.g. by SDP attention [8, 19]).
What remains less studied is can multiple attentions formulated
in different computational forms benefit each other for a given
computer vision task. This work addresses 1) do different attention
mechanisms work better in isolation? and 2) are they complementary
to each other? By examining and exploiting the complementary
relations captured by visual and geometry features, we propose a
novel attention mechanism built upon distinct types of relations
which improve the dense captioning task.

3 METHOD
In this section, we describe the problem formulation, our proposed
architecture and each component in the pipeline. The code is pub-
licly available at https://github.com/aalto-cbir/greatt_densecap.

3.1 Problem Formulation
We devise the dense captioning problem to consist of four sub-tasks:
1) region proposal (RP), 2) region classification (RC), 3) proposal
refinement (PR), and 4) region caption generation (CG). Region

proposal firstly generates a set of region proposals which are then
classified by a region classifier. The locations of region proposals
are refined gradually as the caption generation process proceeds.
The objectives of each task are formulated as follows:

Region proposal (RP). Region proposal is to learn to generate a
set of proposals B̂ = {B̂i }

Nr
i=1 that well match to the ground-truth

proposals B = {Bi }
N
i=1, where Nr is the number of the generated

proposals and N is the number of proposals in an image. Each
proposal is characterized by a rigid box, defined by its center co-
ordinate, width and height. Note that, here we use N and Nr for
notational simplicity, though they may be different for each image.

Region classification (RC). Region classification decideswhether a
region proposal is good enough to be captioned or should be ignored.
We classify the regions by additionally conditioning them on the
captions Ŝ = {Ŝi }

Nr
i=1 (which are generated by the model learned

on the ground-truth captions S = {Si }
N
i=1) and the relationships

between proposals. For an image I we build a directed graph G =

(V, E) over the representations of Nr proposed regions, denoted
by V = {vi , bi }

Nr
i=1, where vi refers to the visual representation

and bi to the geometry representation, which are defined later in
Sec. 3.3. The edges E correspond to the relationships. We, thus,
minimize

Ecls = −
∑
i
log P(ci |B̂i , Ŝi ,G), (1)

where Ecls is the energy function for region classification and ci
indicates the class label, i.e. captioned (ci = 1) or non-captioned
(ci = 0) region.

Proposal refinement (PR). We further refine the proposed regions
by leveraging the caption information, akin to [26]. That is, we
minimize the following energy function:

Ebox =
∑
i ∈pos

Eboxi (∆B̂i |B̂i , Ŝi ), (2)

where ∆B̂i is the offsets to the proposal B̂i estimated in the region
proposal task and pos denotes the set of positive proposals.

Region caption generation (CG). To generate a caption for each
region, we consider the relation graph G to minimize

Ecap =
∑
i ∈pos

E
cap
i (Si |G). (3)

3.2 Overview of the Framework
Figure 2 depicts a high-level sketch of the proposed framework for
dense captioning. The input image is first processed by a region
proposal network (RPN) [14] to attain proposals from which the
regional visual representations {vi }Nr

i=1 are extracted. A graph G,
whose edge weights are calculated by GREatt, is constructed over
vi and employed to obtain a relational representation gi . Both vi
and gi are then fed into the captioning module to generate a caption
embedding. Finally, the caption embedding along with vi and gi
are used to classify the region as captioned or non-captioned class.
In the following subsections, we introduce the formation of gi and
describe the proposal refinement and caption nets in detail.
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Figure 2: The proposed framework divides the dense cap-
tioning problem into four sub-tasks tackled by four sub-
modules, i.e. a) region proposal network, b) region classi-
fier, c) proposal refinement net, and d) captioning net. It fea-
tures Geometry-aware Relational Exemplar attentionmech-
anism (GREatt), a relation module which is constructed on
different types of relationships among region proposals and
learns region-specific features which account for the most
relevant context in the image. In addition, the proposed re-
gion classifier is learned on relational features delivered by
GREatt and additionally on the caption information.

3.3 Geometry-aware Relational Exemplar
Attention

In this section, we discuss the construction of the graph struc-
ture between the proposed regions and demonstrate how one can
learn a powerful representation by considering the latent relation-
ships between the proposed regions. To this end, we propose the
Geometry-aware Relational Exemplar Attention (GREatt) module.

Having the region proposals B̂ and their representations V gen-
erated by the RPN, we aim to learn contextual representations
which are constructed on different types of relationships, namely,
visual relationships and geometry relationships. The visual relation-
ships account for the contextual dependency and visual similarity.
The geometry relationships explain the spatial correlation and ar-
rangement between any two region proposals (i.e. bounding boxes).

Given the individual regional features vi ∈ RDv , i = 1, ...,Nr ,
GREatt calculates the relational features gi by

gi = vi +
Nr∑
j=1

αi, jvj , ∀i, (4)

αi, j = fα (α
д
i, j ,α

v
i, j ,α

ω
i, j ), (5)

where αi, j reflects how much vj should be associated with vi in
region classification and caption generation. fα (·) is GREatt con-
textual function (details provided in Sec. 3.3.4) that learns to embed
three different relationships into αi, j . These relationships are 1)
contextually dependent relation α

д
i, j , 2) visually similar relation

αvi, j , and 3) geometry relation αωi, j . The first two relations are based
on the visual representation and the third relation is based on the
geometry representation. In the following paragraphs, we describe
how α

д
i, j , α

v
i, j , and α

ω
i, j can be addressed computationally and dis-

cuss the possible options to implement fα .

3.3.1 Contextually Dependent Relations αдi, j . Used in [8, 22] for the
object detection task, and in [20] for aggregating representations in

graphical structures for graph classification, concatenating one rep-
resentation (e.g. vj ) to another (e.g. vi ) augments the information
that might be missing in vi , but can be provided by vj . Specifically,
we define αдi, j as

α
′д
i, j =W

д
α (v

′
i | | v

′
j ), v

′
i = tanh(W д

v vi ), (6)

α
д
i, j =

exp(α ′д
i, j )∑Nr

j=1 exp(α
′д
i, j )
, i = 1, ...,Nr , (7)

where | | denotes concatenation, tanh(·) is the hyperbolic tangent
activation function,W д

v ∈ RDw×Dv , andW д
α ∈ R1×2Dw . Concate-

nation is used to associate any two feature vectors, i.e. v′i and v
′
j to

learn how much importance vj has to vi throughW
д
α andW д

v . It is
worth noting that applying concatenation imposes a directedness
assumption on the link between any two regional features vi and
vj since, in general, αi, j , α j,i , when i , j.

3.3.2 Visually Similar Relations αvi, j . We introduce two visual rela-
tions based on dot-product and cosine distance. We categorize the
relation modules based on these two operations together because
they naturally capture the similarity between two representations
and can help enhance the visual signals by identifying other similar
ones.

Scaled Dot-Product: Firstly introduced in [19], scaled dot-product
(SDP) attention mechanism calculates αsi, j as

αsi, j =
(W s

v1vi ) · (W
s
v2vj )

√
Dw

, (8)

whereW s
v1 ,W

s
v2 ∈ RDw×Dv . What is worth noting is that αsi, j in

our framework is used to weight vi directly, whereas it is used to
weight another embedding projected from fi in [19].

Cosine Similarity: Eq. (8) learns the attention weights according
to the correlation ofW s

v1vi andW
s
v2vi measured by the dot-product.

Used for learning the attention weighting in Neural TuringMachine
[4], cosine similarity measures the angle between vectors:

αci, j =
(W s

v1vi ) · (W
s
v2vj )

| |W s
v1vi | | · | |W

s
v2vj | |

. (9)

We model the relational weight αvi, j , which is determined by visual
similarity between two vectors in Eq. (5), with either αsi, j or α

c
i, j ,

i.e.
αvi, j = γ

sαsi, j + γ
cαci, j , (10)

where γ s ,γ c ∈ {0, 1} are hyperparameters deciding either αsi, j or
αci, j to be adopted. This marks the difference between αvi, j and α

д
i, j

where the latter learns to identify dependent context with respect
to the representation vi .

3.3.3 Geometry Relations αωi, j . Relative geometry relation that en-
codes the spatial relationship between two proposals has shown to
be important when modeling contextual information [8, 27]. We
model it with αωi, j [8], where

αωi, j = f ω (W ω
2 σω (W ω

1 bi, j )), (11)

bi, j = [log(
|xi − x j |

wi
), log(

|yi − yj |

hi
), log(

wi
w j

), log(
hi
hj

)]T . (12)
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Figure 3: Architectures of (a) Yang et al. [26] and (b) our
proposed model. Both architectures consist of three RNN
branches which comprise the proposal refinement and cap-
tion nets. The proposedmodel is empowered by the features
learned with GREatt and a joint visual-textual region classi-
fier.

bi, j is the geometry features encoded by center coordinates (x∗, y∗),
width and height of the bounding box w∗, and h∗. Since xi − x j
or yi − yj can be zero, we set a lower bound (i.e. 10−3) on them.
f ω : R → R≥0 can be: 1) max(x , 10−3) similar to ReLU or 2) a
softmax operation. We empirically find that ωi, j tends to be rather
uniformly distributed when learning it with ReLU for any fixed i
and j = 1, ...,Nr . Hence, we adopt softmax in f ω throughout the
experiments.

3.3.4 Contextual Function fα . Before introducing how one can
define the contextual function fα in Eq. (5), we would like to em-
phasize the differences in three visual relationships, defined in
Eqs. (7)-(9). We hypothesize that the first scheme (i.e. concatenation-
based) learns how to identify the essential contextual cues with
respect to each proposal, while the latter two (similarity-based)
learn how to enhance the evidence on the existence of the similar
content to be recognized. This further leads to the assumption that
these two types of interactions in visual domain can potentially
provide distinct contextual information. With this hypothesis, we
write the contextual function fα as

fα (α
д
i, j ,α

v
i, j ,α

ω
i, j ) =

αωi, j exp(γ
дα

д
i, j + α

v
i, j )∑Nr

j=1 α
ω
i, j exp(γ

дα
д
i, j + α

v
i, j )
, (13)

where γд is predefined hyperparameters. αωi, j , α
д
i, j α

v
i, j are defined

in Eqs. (11), (7), and (10), respectively. We empirically validate the
hypothesis by studying the quantities of the attentions (provided
in Figure 5) estimated from different schemes.

3.4 Proposal Refinement and Caption Nets
Yang et al. [26] proposed a triple-streamRNN architecture (shown in
Fig. 3(a)) for refining the proposals generated by the region proposal
network (RPN) [14] and generating the captions. We mainly follow

a similar architecture, i.e. the proposal refinement net RNNr
t , and

the caption nets composed by RNNvt and RNNд
t , t = 0, ...,T + 1,

where t indexes the RNN steps withT + 1 being the maximal length
of a caption including the start (<SOS>) and end (<END>) symbols.
At step t , each RNN∗

t receives a word predicted in step (t − 1) and
updates its hidden states h∗t ∈ RDr and cell states c∗t ∈ RDr .

The main difference between the proposed architecture and that
in [26] can be seen in Figure 3. While RNNr

0 and RNNv0 take vi
as input, RNNд

0 is fed with the context features gi learned with
GREatt instead of image-level features. The hidden state hrτ is used
to predict the offsets to the x andy coordinates, width and height of
the region proposals with a MLP, where τ is the step that predicts
(<END>). As for caption branches, hvt and h

д
t are concatenated to

make a prediction on the distribution of the next word through an-
other MLP. The proposed context features gi , adapted with respect
to each region, are endowed with contextual relationships captured
in the scene. By contrast, the image-level features devised by [26]
in Figure 3(a) can only provide a fixed and generic guidance to all
the regions to be captioned.

3.5 Joint Visual-Textual Region Classifier
Conventionally, the region classifier estimates P(ci |V) which indi-
cates that the prediction is purely conditioned on corresponding
regional features. In this work, we aim to improve the classifier by
replacing the target of estimation with P(ci |B̂i , Si ,G,V), as shown
in Eq. (1), which additionally considers the learned relationships
among the proposals and the caption information. Specifically, we
estimate P(ci |·) with

P(ci |I, B̂i ,Si ,G,V) = MLPrc (hi ), (14)

hi = gi +W
r (hvτ | |h

д
τ ). (15)

In the above equation, the relational representation gi is defined in
Eq. (4), ci is the class label defined in Eq. (1), MLPrc (·) represents a
MLP with a sigmoid activation function placed at the output, and
W r ∈ RD

v×2Dr
is learned to project the caption embedding to

the same domain in which the visual features reside. The rationale
behind this approach is two-fold:

1) Better vision-caption consistency: Projecting (or "trans-
lating") caption embedding back to the visual domain in which
the classification is performed can potentially improve the model’s
consistency between the generated caption embedding and the
embedding of the visual counterpart.

2)Mimicking human annotator’s behavior:We hypothesize
that two actions in the annotation process, i.e. 1) sizing up the
bounding boxes around the interesting contents and 2) caption-
ing, are bonded in both directions. A human annotator’s attention
may be drawn to a relatively salient object, caption it, and then
refine the bounding area and the caption. This indicates that the
caption information can as well provide evidence to infer the region
saliency.

3.6 The Losses
The proposed model is trained by minimizing the total loss L ad-
dressing all sub-tasks, i.e. the region proposal (RP), region classi-
fication (RC), proposal refinement (PR), and caption generation
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(CG) sub-tasks as presented in Sec. 3.1. Specifically,

L = LRP + LRC + LPR + LCG , (16)

LRP = α1L
RP
det + α2L

RP
box , (17)

LRC = β(LRCv + LRCд + LRCh ), (18)

LPR = γLPRbox , (19)

LCG = Lcap , (20)

where

LRPdet = αr

Nr∑
i=1

LRPdet,i , L
RP
box = αr

Nr∑
i=1

LRPbox,i , (21)

LRCv = αr

Nr∑
i=1

LRCv,i , L
RC
д = αr

Nr∑
i=1

LRCд,i , L
RC
h = αr

Nr∑
i=1

LRCh,i , (22)

LPRbox =
1

|pos|

∑
i ∈pos

LPRbox,i , L
cap =

1
|pos|

∑
i ∈pos

L
cap
i , (23)

αr =
1
Nr

is a normalization factor, pos represents the set of positive
regions in the batch of Nr regions, and |pos| denotes the size of
the set. α1, α2, β , and γ are hyperparameters.

RP Losses. Per-sample losses for training RPN are the detection
loss LRPdet,i and regression loss LRPbox,i . The former is defined as the
cross-entropy function over the predicted and the ground-truth
classes, in which the classes refer to either ci = 0, negative non-
captioned regions, or ci = 1, positive captioned regions. The latter
loss is defined by the smooth L1 function used in [14].

RC Losses. Region classification involves three losses with re-
spect to vi , gi , and hi , respectively. These three losses are de-
fined as the cross-entropy function over the predicted and the
ground-truth classes. LRCv,i , L

RC
д,i , and L

RC
h,i are evaluated based on the

ground-truth classes and the predicted classes given by MLPrc (vi ),
MLPrc (gi ), andMLPrc (hi ), respectively. As we take the predictions
from MLPrc (hi ) during evaluation, MLPrc (vi ) and MLPrc (gi ) are
treated as auxiliary predictions which are meant for enhancing
the discriminative power of individual vi and gi . Note that these
three predictions share the same set of parameters from MLPrc (·).
Minimizing LRC corresponds to minimizing Ecls in Eq. (1).

PR Loss. Proposal refinement loss LPRbox,i in Eq. (23), same as
LRPbox,i , is defined by the smooth L1 function over coordinates of
the predicted box and the ground-truth box. Note that minimizing
LPRbox corresponds to minimizing Ebox in Eq. (2).

CG Loss. Caption generation loss Lcapi , defined over word distri-
butions in ith ground-truth caption and predicted word distribution,
is measured by the cross-entropy function. Minimizing Lcap corre-
sponds to minimizing Ecap in Eq. (3).

4 EXPERIMENTS
4.1 Dataset
All the experiments are conducted on the Visual Genome dataset
[11], created for various vision-language tasks such as dense cap-
tioning, VQA, and SGG. For the DC task, the annotations with
region bounding boxes and corresponding captions are provided.
Even though three versions, V1.0, V1.2, and V1.4 are available, we

compare different DC models on V1.2 since the changes in V1.4
do not affect the data used in the DC task, and the state-of-the-art
models are extensively evaluated mainly on V1.2 [26].

4.2 Experimental Setting
Following the split protocol provided in [9, 26], the images are
divided into training, validation, and test sets, comprising 77398,
5000, and 5000 images, respectively. The provided bounding box
annotations are often highly overlapping, hence all the annotations
with IoU > 0.7 of their bounding boxes are merged into one [26].
Accordingly, each merged region across all sets can contain mul-
tiple reference captions, in which a caption for a merged region
is randomly drawn during training. The parameter settings in the
RPN strictly follow those in [26].

4.3 Hyperparameter Setting and Model
Training

The hyperparameters defined in Eqs. (21)–(23) are given by α1 = 0.1,
α2 = 0.05, β = 0.1, and γ = 0.01. The input image is resized so that
the longer side is of 720 pixels. The most frequent 10,000 words
are used and those excluded are replaced with an <UNK> (unknown
word) symbol. Hence, this amounts to 10,003 words (10,000 most
frequent words plus <SOS>, <END>, and <UNK>) available for the
caption model. Regions with captions longer than 10 words are
discarded, and each caption of the remaining ones is padded with
<SOS> in the beginning and <EOS> at the tail. The proposal refine-
ment and caption nets adopt three seperate LSTMs with 512 hidden
units. The experiments with three visual features: VGG16 [17],
which has two fully-connected layers both consisting of 4096 units
at the output, extracts 4096-dimensional features for each region
proposal. ResNet50 and ResNet101 [5] extract 1024-dimensional
features. The training batch size is set to be 1 (i.e. a single image)
with Nr = 256 (referred in Eqs. (21)–(23)) region proposals evenly
sampled from positive and negative proposals in the RPN.

All the models throughout the experiments are trained with
stochastic gradient descent with momentum set at 0.98. The initial
learning rate is 0.001, reduced by half every 100,000 steps (≈ 1.3
epochs). Models with VGG16 are trained only with Conv4_* and
Conv5_* being fine-tuned in the periods of 1.5–4 epochs and 5.5–10
epochs. Models with ResNet50 and ResNet101 are trained with 4th
residual block being fine-tuned in 0–1.5 epochs and 4–5.5 epochs,
and 3rd residual block as well being fine-tuned in the periods of
1.5–4 epochs and 5.5–10 epochs. We follow the stage-wise training
scheme suggested in [26] to train the proposed models. Firstly, we
train the RPN, the proposal refinement net, and the caption net
end-to-end. Here at this stage, only one caption LSTM (i.e. RNNvt ,
but not RNNд

t ) which receives the regional features vi is trained.
Secondly, we add the second LSTM stream RNNд

t with the context
features gi into the models and fine-tune the other parts. Finally, we
fine-tune the models and feed the region classifierMLPrc with hi of
Eq. (15), the features containing both visual and caption embedding.
This training scheme helps the models in which the performance
of each component is based upon each other, e.g., the proposal
refinement net can only start to refine the proposals generated by
the RPN once the RPN has learned to produce reasonable proposals.
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4.4 Evaluation Metric
The main metric adopted to evaluate the DC models is the mean
average precision (mAP) that jointly considers the goodness of
the region proposals and the generated captions in terms of IoU
and METEOR [2] scores with the ground-truth annotations [9].
mAP is calculated by averaging the average precision scores eval-
uated at different IoU thresholds, {0.3, 0.4, 0.5, 0.6, 0.7}, and ME-
TEOR thresholds, {0, 0.05, 0.1, 0.15, 0.2, 0.25}. Besides, we also adopt
mAP@{IoU=0.3,0.4,0.5,0.6,0.7} andmAP@{small,medium,large} (eval-
uated at proposals smaller than 482, between 482 − 1082, and larger
than 1082 pixels) to facilitate a deeper comparison between models.

Table 1: The representation of different attention modules
defined by γд and γv in Eqs. (13) and (10). The geometry rela-
tionship captured by αωi, j is considered by all different mod-
ules listed.

models ctx sim(sdp) sim(cos) ctx+sim(sdp) ctx+sim(cos)
(γд , γ s , γ c ) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1)

4.5 Quantitative Comparison
We compare the proposed framework with the state-of-the-art DC
models [26]. The pioneer DC framework from Johnson et al. [9]
reported the performance of their models on Visual Genome V1.0,
and thus a direct comparison with their results is not possible.
It is difficult to compare results also from many other different
DC models since, to the best of our knowledge, the only notable
and reliable results one can compare against are from [26]. In the
following subsections, we compare different models of our own
with configurations listed in Table 1 and those described in [26].

4.5.1 Comparing with State of the Art. We have tried our best to
replicate the best performing architecture reported in [26], and the
highest mAP we can obtain is 9.72, which is reasonably close to 9.96
reported in their work. First, we study whether the models with
added geometry relation and a single visual attention mechanism
can improve over those without. The results in the second to the
fourth rows (against those in the first row) in Table 2 highlight
the effect of a model that considers a single visual relationship
(implemented by either αдi, j , α

s
i, j , or α

c
i, j , referred in Sec. 3.3.1 and

3.3.2) and the geometry relationship captured by αωi, j (referred
in Sec. 3.3.3). We observe the consistent improvement made by
the proposed models in the mAP across VGG16, ResNet50, and
ResNet101 visual features.

Moving to the fifth row onwards in Table 2, one can observe
the best mAP is obtained from the proposed architecture when
GREatt (with geometry, concatenation-based, cosine distance based
attention modules simultaneously employed) and caption-boosted
classifier (described in Sec. 3.5) are used. The best result with VGG16
achieves 10.23, which, to date, surpasses the state-of-the-art num-
ber that has been reported. A greater margin of improvement in
mAP can be observed (+5.3%, +5.4%, +6.23% with VGG16, ResNet50,
and ResNet101, respectively) when comparing the best performing
models of ours and those in [26].

We also report the mAP at different proposal sizes in Table 3. One
can easily observe a similar trend where our architectures bring

steady improvement for all proposal size groups. This shows that
our models do not favor proposals of certain sizes, but provide all-
around improvement over arbitrary sizes of proposals. Moreover,
the largest improvement often comes from the mAP@small, indi-
cating that our context modeling scheme has the largest positive
impact on making inference on the small region proposals.

4.5.2 Comparing Models with Different Attention Modules. Here,
we study the effect on varying computational attention modules
proposed. The aim of the study is to answer whether (1) models
with GREatt employing one geometry and two visual attention
mechanisms (out of three presented in Sec. 3.3.1 and 3.3.2), im-
proves the results over those with one geometry and a single visual
attention mechanisms, and (2) models equipped with the region
classifier exposed with caption information improves the results
over those without.

Fusing attentions. From Table 2, one can also compare two
types of models: (1) those with combined visual attentions (pre-
sented in the fifth to sixth rows) and (2) those with single visual
attention (presented in the second to fourth rows). We compare
them by picking the best result (e.g. mAP) that a model in each type
can achieve. One can observe the improvement in mAPmade by the
models with combined visual attentions on VGG16 and ResNet50,
but not on ResNet101.

Classifying regions with captions. From Table 2, one can
observe a significant improvement made by the models with the
caption-boosted region classifier based on all visual feature ex-
tractors. From Table 3, we see that the largest improvements are
made on mAP@small, demonstrating that the caption information
is crucial to make smaller RoIs detectable.

4.6 Qualitative Results
We compare qualitative results from ourmodel (i.e. the best perform-
ing one, "ctx+sim(cos)" model listed in Table 1) and the one from
[26] with ResNet101 features in Figure 4. Clearly shown, Yang’s
model tends to ignore the relationship (Figure 4(a): missing "on a
cutting board"), or fail to encode the context (e.g. Figure 4(e): miss-
ing "laptop" in the caption). By contrast, our proposed model not
only captures the correct relationships, but also correctly recognizes
and names the objects in the context.

Next, we study attention weights (i.e. αωi, j , α
д
i, j , and α

c
i, j ) learned

to capture different relationships in Figure 5. One can observe
that three types of weights attend to quite distinct and sometimes
complementary sets of areas with respect to each proposal. While
the αωi, j and α

д
i, j tend to capture the necessary context (i.e. the

tennis field in this example), cosine distance based visual attention
αci, j tends to capture visually similar context. For example, while
the subject in the proposal is the tennis player in the distance, it
tries to retrieve similar person-like objects. The combined attention
is able to capture the most relevant context, e.g. in Figure 5(c), it
identifies who is holding the racket, and in Figure 5(d), it captures
almost the whole tennis court to be able to recognize that the clock
is in the court.

5 CONCLUSIONS
In this paper, we visited the dense captioning task, which serves as
a powerful means to facilitate multimodal context understanding
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Table 2: Quantitative results of models with VGG16, ResNet50, and ResNet101, respectively, on Visual Genome V1.2. models
column showsmodels with varying visual attentionmodules named in Table 1. cap indicates if the caption embedding is added
when classifying the region proposals. The best model with respect to eachmetric is highlighted in bold, and the second best is
underlined. (*) indicates the figure reported in [26]while the other figures are obtained fromour implementation.@n indicates
the mAP score evaluated at IoU=n, n = {0.3, 0.4, 0.5, 0.6, 0.7}.

VGG16 ResNet50 ResNet101
models cap mAP @0.3 @0.4 @0.5 @0.6 @0.7 mAP @0.3 @0.4 @0.5 @0.6 @0.7 mAP @0.3 @0.4 @0.5 @0.6 @0.7

Yang et al. [26] - 9.72 (9.96*) 15.13 13.16 10.25 6.77 3.28 10.89 16.85 14.62 11.55 7.73 3.70 11.92 18.16 15.83 12.58 8.68 4.37
ctx - 9.85 15.22 13.25 10.41 6.96 3.39 11.00 16.48 14.52 11.70 8.12 4.14 12.51 17.73 15.76 12.84 9.14 4.82

sim(sdp) - 9.88 15.29 13.32 10.44 6.96 3.39 11.00 16.51 14.58 11.68 8.11 4.12 11.79 17.95 15.67 12.43 8.59 4.30
sim(cos) - 9.73 15.10 13.15 10.29 6.78 3.33 11.07 17.09 14.85 11.77 7.90 3.75 11.73 17.91 15.64 12.40 8.49 4.20

ctx+sim(sdp) - 9.97 15.33 13.40 10.55 7.06 3.48 11.03 16.54 14.63 11.70 8.14 4.14 12.14 18.37 16.09 12.87 8.88 4.96
ctx+sim(cos) - 9.93 15.90 13.59 10.36 6.68 3.11 11.10 16.62 14.73 11.77 8.20 4.19 12.15 18.37 16.09 12.88 8.90 4.48
ctx+sim(sdp) ✓ 10.22 16.30 14.00 10.71 6.91 3.14 11.39 17.03 14.98 12.09 8.43 4.40 12.52 18.72 16.37 13.23 9.34 4.93
ctx+sim(cos) ✓ 10.23 16.39 14.04 10.76 6.85 3.13 11.48 17.14 15.08 12.15 8.56 4.45 12.67 18.39 16.32 13.44 9.79 5.40

Table 3: Results on comparing models on mAP@{small,
medium, large}, denoted by @S, @M, @L.

VGG16 ResNet50 ResNet101
models cap @S @M @L @S @M @L @S @M @L

Yang et al. [26] 3.99 8.15 14.22 4.09 9.08 16.03 4.78 9.94 17.35
ctx - 4.03 8.39 14.46 4.19 8.82 16.26 4.61 9.98 17.82

sim(sdp) - 4.00 8.25 14.36 4.33 8.97 16.24 4.28 9.57 17.44
sim(cos) - 4.14 8.23 14.19 4.46 9.21 16.16 4.36 9.68 17.42

ctx+sim(sdp) - 3.83 8.34 14.63 4.35 9.13 16.22 4.46 9.86 17.79
ctx+sim(cos) - 3.95 8.53 14.24 4.48 9.11 16.27 4.52 10.15 17.71
ctx+sim(sdp) ✓ 4.19 8.63 14.46 4.25 9.52 16.44 4.83 10.55 18.14
ctx+sim(cos) ✓ 4.39 8.61 14.42 4.68 9.34 16.80 4.94 10.48 18.39

Figure 4: Qualitative comparison between the proposed
method and that proposed by Yang et al. [26]. More relation-
ships and context information are revealed in the captions
generated by our method. Captions (ours / [26]): (a) two pieces
of cheese on a cutting board / a slice of yellow cheese, (b) a blue
bus on the road / a blue and white bus, (c) green trees on the side
of the tracks / green leaves on the tree, (d) a person skiing on the
snow / person wearing blue pants, (e) screen of laptop computer /
a computer monitor.

and learning. We proposed an improved architecture which fea-
tures (1) a Geometry-aware Relational Exemplar attention (GREatt)
mechanism and (2) a joint visual-textual relational region classifier,
for the dense captioning problem. Our proposed methods bring sig-
nificant improvements over the state-of-the-art results. In addition,

Figure 5: Different attention mechanisms jointly learned
with model "ctx+sim(cos)" (referred in Table 1). Each set of
image, from top to bottom, left to right, shows 1) detection
and caption results, 2) combined attention, αi, j , 3) geometry
attention, αωi, j , 4) contextual dependent visual attention, α

д
i, j ,

and 5) visually similar and supported attention, αci, j .

we demonstrated that GREatt captures varying and meaningful
contexts for different regions to construct contextually dependent
and region-specific features. The proposed region classifier which
learns on the subspace shared with visual and textual embeddings
has also demonstrated its effectiveness and led to improvements
in almost all metrics. Qualitatively, our proposed models, compar-
ing to the prior arts, are more capable of generating captions that
capture relationships between objects and are able to accurately
recognize and name the objects in the context. However, how to op-
timally combine the heterogeneous types of attention still remains
an open question, and we leave it as a future avenue of research.
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