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Abstract. Convolutional neural networks (CNNs) have recently
achieved outstanding results for various vision tasks, including indoor
scene understanding. The de facto practice employed by state-of-the-art
indoor scene recognition approaches is to use RGB pixel values as input
to CNN models that are trained on large amounts of labeled data (Ima-
geNet or Places). Here, we investigate CNN architectures by augmenting
RGB images with estimated depth and texture information, as multi-
ple streams, for monocular indoor scene recognition. First, we exploit
the recent advancements in the field of depth estimation from monoc-
ular images and use the estimated depth information to train a CNN
model for learning deep depth features. Second, we train a CNN model
to exploit the successful Local Binary Patterns (LBP) by using mapped
coded images with explicit LBP encoding to capture texture information
available in indoor scenes. We further investigate different fusion strate-
gies to combine the learned deep depth and texture streams with the
traditional RGB stream. Comprehensive experiments are performed on
three indoor scene classification benchmarks: MIT-67, OCIS and SUN-
397. The proposed multi-stream network significantly outperforms the
standard RGB network by achieving an absolute gain of 9.3%, 4.7%,
7.3% on the MIT-67, OCIS and SUN-397 datasets respectively.
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1 Introduction

Scene recognition is a fundamental problem in computer vision with numer-
ous real-world applications. The problem can be divided into recognizing indoor
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versus outdoor scene types. Initially, most approaches target the problem of out-
door scene classification with methods demonstrating impressive performance on
standard benchmarks, such as fifteen scene categories [17]. Later, the problem of
recognizing indoor scene categories have received much attention with the intro-
duction of specialized indoor scene datasets, including MIT-67 [23]. Different to
outdoor scene categorization, where global spatial layout is distinctive and one
of the most discriminative cues, indoor scenes are better characterized either
based on global spatial properties or local appearance information depending on
the objects they contain. In this work, we investigate the challenging problem of
automatically recognizing indoor scene categories.

In recent years, deep convolutional neural networks (CNNs) have revolution-
ized the field of computer vision setting new state-of-the-art results in many
applications, including scene recognition [32]. In the typical scenario, deep net-
works or CNNs take raw pixel values as an input. They are trained using a
large amount of labeled data and perform a series of convolution, local normal-
ization and pooling operations (called layers). Generally, the final layers of a
deep network are fully connected (FC) and employed for the classification pur-
pose. Initially, deep learning based scene recognition approaches employed CNNs
pre-trained on the ImageNet [26] for object recognition task. These pre-trained
deep networks were then transferred for the scene recognition problem. However,
recent approaches have shown superior results when training deep networks on
a specialized large-scale scene recognition dataset [32]. In all cases, the de facto
practice is to use RGB patches as input when training these networks.

As mentioned above, the standard procedure is to employ RGB pixel values
as input for training deep networks. Besides color, texture features also pro-
vide a strong cue for scene identification at both the superordinate and basic
category levels [24]. Significant research efforts have been dedicated in the past
in designing discriminative texture features. One of the most successful hand-
crafted texture descriptors is that of Local Binary Patterns (LBP) and its vari-
ants [12,21,22]. LBP is based on the signs of differences of neighboring pixels
in an image and is invariant to monotonic gray scale variations. Recent stud-
ies [1,4] have investigated employing deep learning to design deep texture rep-
resentations.

Other than color and texture, previous works [7,11,27,28] have shown the
effectiveness of depth information and that depth images can be used simulta-
neously with RGB images to obtain improved recognition performance. How-
ever, most of these approaches require depth data acquired from depth sen-
sors together with camera parameters to associate point clouds to image pixels.
Despite increased availability of RGB-D sensors, standard large-scale object and
scene recognition benchmarks (ImageNet and Places) still contain RGB images
captured using different image sensors with no camera parameters to gener-
ate accurate point clouds. In a separate research line, recent works [5,20] have
investigated estimating depth information from single monocular images. These
methods employ RGB-D acquired through depth sensors during the training
stage to infer the depth of each pixel in a single RGB image. Here, we aim
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to exploit these advancements in depth estimation from monocular images and
hand-crafted discriminative texture features to integrate explicit depth and tex-
ture information for indoor scene recognition in the deep learning architecture.

In this work, we propose a multi-stream deep architecture where the esti-
mated depth and texture streams are fused with the standard RGB image stream
for monocular indoor scene recognition. The three streams can be integrated at
different stages in the deep learning architecture to make use of the complemen-
tary information available in these different modalities. In the first strategy, the
three streams are integrated at an early stage by aggregating the RGB, texture
and estimated depth image channels as the input to train a joint multi-stream
deep CNN model. In the second strategy, the three streams are trained separately
and combined at a later stage of the deep network. To the best of our knowl-
edge, we are the first to propose a multi-stream deep architecture and investigate
fusion strategies to combine RGB, estimated depth and texture information for
monocular indoor scene recognition. Figure 1 shows example indoor scene cate-
gories from the MIT-67 dataset and their respective classification accuracies (in
%) when using different streams and their combination in the proposed multi-
stream architecture.

Auditorium Bedroom Closet Grocerystore kitchen Dining Room Classroom Fastfood Restaurant
RGB 33 57 72 62 52 44 67 53
Depth 56 48 83 48 56 33 61 35
Texture 56 61 72 52 57 50 72 35
Three-Stream 72 67 84 86 71 78 83 94

Fig. 1. Example categories from MIT-67 indoor scene dataset and their respective
classification accuracies (in %) when using different streams: baseline standard RGB,
estimated depth and texture. We also show the classification accuracies when combining
these streams in our late fusion based three-stream architecture. The classification
results are consistently improved with our three-stream architecture, highlighting the
complementary information possessed by the three streams.

2 Related Work

Indoor Scene Recognition: Recently, indoor scene recognition has gained
a lot of attention [6,8,14–16]. Koskela [16] propose an approach where CNNs,
trained on object recognition data, using different architectures are employed as
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feature extractors in a standard linear-SVM-based multi-feature scene recogni-
tion framework. A discriminative image representation based on discriminative
mid-level convolutional activations is proposed by [14] to counter variability in
indoor scenes. Guo et al. [6] propose an approach by integrating local convolu-
tional supervision layer that is constructed upon the convolutional layers of deep
network. The work of [15] proposes an approach based on spectral transforma-
tion of CNN activations integrated as a unitary transformation within a deep
network. All these aforementioned deep learning based approaches are trained
using RGB pixel values of an image.

Depth Estimation: Recent approaches [5,19,20] employ deep learning to learn
depth estimation in monocular images. The work of [5] proposes a multi-scale
convolutional architecture for depth prediction, surface normals and seman-
tic labeling. Li et al. [19] introduce an approach by regressing CNN features
together with a post-processing refinement step employing conditional random
fields (CRF) for depth estimation. The work of [20] proposes a deep convolu-
tional neural field model that jointly learns the unary term and pairwise term of
continuous CRF in a unified CNN framework. Different to [5], where the depth
map is directly regressed via convolutions from an input image, the approach
of [20] explicitly models the relations of neighbouring superpixels by employing
CRF. Both unary and binary potentials are learned in a unified deep network
framework. Here, we employ deep convolutional neural field model of [20] as a
depth estimation strategy for our monocular deep depth network stream. In our
multi-stream architecture, the monocular depth stream is trained from scratch,
on the large-scale ImageNet and Places datasets, for indoor scene recognition.

Texture Representation: Robust texture description is one of the fundamen-
tal problems in computer vision and is extensively studied in literature. Among
existing methods, the Local Binary Patterns (LBP) descriptor [22] is one of
the most popular hand-crafted texture description methods and several of its
variants have been proposed in literature [21]. Recent approaches [1,4] have
investigated deep learning for the problem of texture description. Cimpoi et
al. [4] propose to encode convolutional layers of the deep network using the
Fisher Vector scheme. Rao et al. [1] investigate the problem of learning texture
representation and integrate LBP within deep learning architecture. In that app-
roach, LBP codes are mapped to points in a 3D metric space using the approach
of [18]. Here, we employ the strategy proposed in [1] to learn the texture stream
and combine it with RGB and estimated depth streams in a multi-stream deep
architecture for indoor scene recognition.

3 Our Multi-stream Deep Architecture

Here, we present our multi-stream deep architecture for indoor scene recognition.
We also investigate fusion schemes to integrate different modalities in the deep
learning architecture. We base our approach on the VGG architecture [3] that
takes as input an image of 224 × 224 pixels and consists of five convolutional
(conv) and three fully-connected (FC) layers.
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3.1 Deep Depth Stream

The first step in designing of the depth stream is to compute the estimated
depth image given its RGB counterpart. We employ the method of [20] for
depth estimation of each pixel in a monocular image. The depth estimation app-
roach employs continuous CRF to explicitly model the relations of neighbouring
superpixels. Both unary and binary terms of continuous CRF are learned in an
unified deep network framework. In the depth estimation model, each image is
comprised of small regions, termed as superpixels, with nodes of a graphical
model defined on them. Each superpixel in an image is described by the depth
value of its centroid. Let I be an image and y = [sp1, . . . , spm]� ∈ R

m be a
vector of all m superpixels in image I. The conditional probability distribution
of the data is then modelled by employing the following density function:

P (y | I) =
1

Z(I)
exp(−EN(y, I)), (1)

where EN is the energy function and the partition function represented by Z is
defined as:

Z(I) =
∫
y

exp {−EN(y, I)} dy. (2)

Due to the continuous nature of the depth values y, no approximation method
is required to be applied. The subsequent MAP inference problem is then solved
in order to obtain the depth value of a new image. The energy function is written
as a combination of unary potentials UN and pairwise potentials PV over the
superpixels M and edges S of the image I:

EN(y, I) =
∑
p∈M

UN(yp, I) +
∑

(p,q)∈S
PV (yp, yq, I), (3)

Here, the unary potential UN regresses the depth value for a single super-
pixel whereas the pairwise potential PV invigorates the superpixel neighbor-
hoods with similar appearances to hold similar depth values. In the work of [20],
both the unary potentials UN and the pairwise potentials PV are learned jointly
in a unified deep network framework. The deep network comprises the following
components: a continuous CRF loss layer consisting of a unary part and a pair-
wise part. Given an input image, image patches centred around each superpixel
centroid are considered. Each image patch is used as an input to the unary part
which is fed into the deep network. The network returns a single value repre-
senting the regressed depth value of the superpixel. The unary part of the deep
network consists of five convolutional and four fully-connected layers. The unary
potential is formulated by the output of the deep network by considering the
following least square loss:

UN(yp, I; θ) = (yp − zp(θ))2,∀p = 1, . . . , m, (4)
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Here, zp is the regressed depth of the homogeneous region (superpixel) p,
parameterized by the deep network parameters θ. In case of the pairwise part of
the network, the input is the similarity vectors of all neighboring superpixel pairs,
fed to the FC layer with shared parameters among different superpixel pairs.
The pairwise term enables neighboring superpixels with similar appearances to
have similar depth values. Three types of pairwise similarities are considered:
color histogram difference, color difference and texture disparity based on LBP.
The output is then a 1-dimensional similarity vector for each of the neighboring
superpixel pairs. Consequently, outputs from the unary and the pairwise terms
are taken by the continuous CRF loss layer in order to minimize the negative log-
likelihood. Standard RGB-D datasets, including NYUD2 have the same viewing
angles for both the camera and the depth sensor. This implies that objects in
a depth image possess the same 2D shapes as in RGB image with the only
difference is that the RGB values are replaced by depth values. The estimated
depth images alleviate the problem of intra-object variations, which is desired
for scene understanding. During the construction of the depth stream, we first
estimate depth values of the input RGB image using the approach described
above resulting in a single-channel depth map. The estimated depth values are
log-normalized to the range of [0, 255] and duplicated into three channels which
are then input to the deep learning framework. Figure 2 shows example RGB
images and their corresponding estimated depth maps.

Fig. 2. On the left: example RGB images and the corresponding texture coded mapped
images (visualized here in color) together with estimated depth images. On the right:
visualization of filter weights from the RGB, texture and estimated depth CNN models.

3.2 Deep Texture Stream

In addition to the standard RGB and estimated depth streams, we propose to
integrate an explicit texture stream for indoor scene recognition since texture
features have shown to be crucial for scene understanding. Here, we base our
texture stream on the popular LBP descriptor [22] where the neighborhood of
a pixel is described by its binary derivatives used to form a short code for the
neighborhood description of the pixel. These short codes are binary numbers
(lower than threshold (0) or higher than the threshold (1)), where each LBP
code can be regarded as a micro-texton. Each pixel in the image is allocated a
code of the texture primitive with its best local neighborhood match.
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When integrating the LBP operator in the deep learning architecture, a
straightforward way is to directly employ LBP codes as an input to the deep
network. However, the direct incorporation of LBP codes as input is infeasible
since the convolution operations, equivalent to a weighted average of the input
values, employed within CNNs are unsuitable for the unordered nature of the
values of the LBP code. To counter this issue, the work of [18] proposes to map
the LBP code values to points in a 3D metric space. In this metric space, the
Euclidean distance approximates the distance between the LBP code values.
Such a transformation enables averaging of LBP code values during convolu-
tion operations within CNN models. First, a distance δj,k is defined between the
LBP codes LBPTj and LBPTk. In the work of [18], Earth Mover’s Distance
(EMD) [25] is employed since it takes into account both the different bit values
and their locations. Afterwards, a mapping is derived of the LBP codes into
a DM -dimensional space which approximately preserves the distance between
them. The mapping is derived by applying Multi Dimensional Scaling (MDS) [2].
The mapping enables the transfer of LBP code values into a representation that
is suitable to be used as input to the deep network. As in [1,18], the dimen-
sionality DM is set to three and the resulting texture representation is used
to train a texture stream for indoor scene recognition. Figure 2 shows example
RGB images and their corresponding texture coded mapped images.

Fig. 3. Our late fusion based multi-stream deep architecture. In this architecture, RGB,
estimated depth and texture streams are kept separate and the point of fusion, which
combines the three network towers, is at the end of the network.

3.3 Multi-stream Fusion Strategies

We consider two fusion strategies to integrate the RGB, estimated depth and
texture streams in a multi-stream architecture. In the first strategy, termed as
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early fusion, the three network streams are combined at an early stage as inputs
to the deep network. As a result, the input to CNN is of 224 × 224 × N dimen-
sions, where N is the number of image channels. When combining the three
streams in an early fusion strategy, the number of image channels is N = 7 (3
RGB, 1 depth and 3 texture). A joint deep model is trained due to the aggrega-
tion of the image channels. In the second fusion strategy, termed as late fusion,
the three networks are trained separately. The standard RGB stream network
takes raw RGB values as input. The texture stream network takes texture coded
mapped image as an input to the CNN model. This texture coded mapped image
is obtained by first computing the LBP encoding that transforms intensity values
in an image to one of the 256 LBP codes. The code values are then mapped into
a 3D metric space, as described above, resulting in a 3-channel texture coded
mapped image. The depth image is obtained by converting an RGB image to an
estimated depth map, based on the procedure described earlier, to be used as an
input to the depth stream. Consequently, the three streams are fused at the final
stages of the deep network either by using FC layer activations with linear SVMs
or combining the score predictions from individual streams. Figure 3 shows our
late fusion based three stream architecture. The three streams are separately
trained, from scratch, on both ImageNet [26] and Places [32] datasets. Figure 2
shows the VGG architecture based visualization of filter weights from the RGB,
texture and estimated depth models trained on the ImageNet.

4 Experimental Results

Experimental Setup: We train our multi-stream network, described in Sect. 3,
from scratch on the ImageNet 2012 [26] and Places 365 [32] training sets, respec-
tively. In all cases, the learning rate is set to 0.001. The weight decay which
contributes reducing the training error of the deep network is set to 0.0005. The
momentum rate which is associated with the gradient descent method employed
to minimize the objective function is set to 0.9. In case of fine-tuning the pre-
trained deep models, we employ training samples with a batch size of 80, a
momentum value of 0.9 and an initial learning rate of 0.005. Furthermore, in
all experiments the recognition results are reported as the mean classification
accuracy over all scene categories in a scene recognition dataset. From the net-
work prediction, the scene category label providing the highest confidence is
assigned to the test image. The overall results are obtained by calculating the
mean recognition score over all scene classes in each scene recognition dataset.

Datasets: MIT-67 [23] consists of 15,620 images of 67 indoor scene categories.
We follow the standard protocol provided by the authors [23] by using 80 images
per scene category for training and another 20 images for testing. OCIS [14] is
the recently introduced large-scale object categories in indoor scenes dataset.
It comprises of 15,324 images spanning more than 1300 commonly encoun-
tered indoor object categories. We follow the standard protocol provided by
the authors [14] by defining a train-test split of (67% vs 33%) for each cate-
gory. SUN-397 [30] dataset consists of 108,754 images of 397 scene categories.
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Here, the scene categories are both from indoor and outdoor environments. Each
category in this dataset has at least 100 images. We follow the standard pro-
tocol provided by the authors [30] by dividing the dataset into 50 training and
50 test images per scene category. Since our aim is to investigate indoor scene
recognition, we focus on the 177 indoor scene categories for the baseline compar-
ison. Later, we show the results on the full SUN-397 dataset for state-of-the-art
comparison.

Baseline Comparison: We compare our three-stream approach with the base-
line standard RGB stream. Further, both early and late fusion strategies are
evaluated for fusing the RGB, estimated depth and texture streams. For a fair
comparison, we employ the same network architecture together with the same set
of parameters for both the standard RGB and our multi-stream networks. Table 1
shows the baseline comparison with deep models trained on both ImageNet and
Places datasets. We first discuss the results based on deep models pre-trained on
the ImageNet. The baseline standard RGB deep network achieves average classi-
fication scores of 63.0%, 39.1%, and 46.0% on the MIT-67, OCIS, and SUN-397
datasets, respectively. The estimated depth based deep stream obtains mean
recognition rates of 41.0%, 25.2%, and 26.0% on the MIT-67, OCIS and SUN-
397 datasets, respectively. The texture coded deep image stream yields average
classification accuracies of 59.1%, 33.6%, and 38.9% on the three scene datasets.
In the case of the two fusion strategies, superior results are obtained with late
fusion. The late fusion based two-stream network with RGB and depth streams
obtains average classification scores of 67.1%, 40.9%, and 48.4% on the MIT-
67, OCIS and SUN-397 datasets, respectively. Further, the late fusion based
two-stream network with RGB and texture streams achieves average recognition
rates of 69.3%, 42.5%, and 51.1% on the MIT-67, OCIS and SUN-397 datasets,
respectively. The proposed late fusion based three-stream deep network signif-
icantly outperforms the baseline standard RGB deep stream on all datasets.
Significant absolute gains of 9.3%, 4.7%, and 7.3% is achieved on the MIT-67,
OCIS and SUN-397 datasets, respectively.

Other than the OCIS dataset, results are improved overall when employing
deep models pre-trained on the Places scene dataset. The inferior recognition
results in the case of the OCIS dataset are likely due to the fact that this dataset
is based on indoor objects as categories instead of scenes. When comparing
models trained on the Places dataset, our late fusion based three-stream deep
architecture provides a substantial gains of 7.6%, 5.7%, and 4.9% on the MIT-67,
OCIS and SUN-397 datasets respectively, compared to the baseline RGB stream.

We further analyze the impact of integrating depth and texture informa-
tion within the deep learning architecture by looking into different indoor scene
hierarchies available in the SUN-397 dataset. The indoor categories in the SUN-
397 dataset are further annotated with the following scene hierarchies: shop-
ping/dining with 40 indoor scene classes, workplace (office building, factory,
lab, etc.) with 40 indoor scene classes, home/hotel with 35 indoor scene classes,
transportation (vehicle interiors, stations, etc.) with 21 indoor scene classes,
sports/leisure with 22 indoor scene classes, and cultural (art, education, religion,
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Table 1. Comparison (overall accuracy in %) of our proposed three-stream deep archi-
tecture with the baseline standard RGB stream on the three scene datasets. We show
multi-stream results with both early and late fusion schemes using deep networks either
pre-trained on ImageNet or Places. Our proposed late-fusion based three-stream archi-
tecture significantly outperforms the baseline standard RGB stream on all datasets.

Architecture Pre-training: imagenet Pre-training: places

MIT-67OCIS SUN-397MIT-67OCIS SUN-397

RGB deep stream (baseline) 63.0 39.1 46.0 73.6 32.5 58.6

Depth deep stream 41.0 25.2 26.0 51.5 21.4 34.6

Texture deep stream 59.1 33.6 38.9 68.7 27.2 49.3

Two-stream {RGB, depth} (early fusion) 65.2 39.5 46.7 74.3 32.8 59.3

Two-stream {RGB, depth} (late fusion) 67.1 40.9 48.4 76.5 34.1 60.5

Two-stream {RGB, texture} (early fusion) 65.7 39.9 47.9 75.3 33.3 59.7

Two-stream {RGB, texture} (late fusion) 69.3 42.5 51.1 78.8 36.5 61.8

Three-stream {RGB, depth, texture} (early fusion) 67.8 40.7 48.8 76.5 34.9 60.6

Three-stream {RGB, depth, texture} (late fusion) 72.3 43.8 53.3 81.2 38.2 63.5

Table 2. Comparison (overall accuracy in %) of our three-stream deep architecture
with the baseline standard RGB stream on different indoor scene hierarchies available
in SUN-397 dataset. The proposed three-stream deep architecture (late fusion) consis-
tently improves the baseline standard RGB stream on all indoor scene hierarchies.

Architecture Shopping/dining Workplace Home/hotel Transportation Sports/leisure Cultural

RGB deep stream

(baseline)

38.4 46.5 44.3 56.1 63.8 43.6

Ours {RGB, depth,

texture} (late fusion)

45.5 52.5 54.3 64.7 67.6 51.3

Fig. 4. Example images from SUN-397 indoor categories where our approach provides
the biggest increase (top) and the biggest decrease (bottom), compared to the baseline.
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Table 3. Comparison (overall accuracy in %) with the state-of-the-art approaches.

Method Publication MIT-67 OCIS SUN-397

Multi-scale hybrid CNNs [10] CVPR 2016 86.0 - 70.2

DRCF-CNN [14] TIP 2016 71.8 32.0 -

SLSIF-CNN [8] TIP 2016 74.4 - -

PatchNets [29] TIP 2017 84.9 - 71.7

LSHybrid-CNNs [6] TIP 2017 83.8 - 67.6

Hybrid CNN models [31] TCSVT 2017 86.0 - 70.7

Spectral-CNNs [15] ICCV 2017 84.3 - 67.6

SCF-CNNs [13] MVA 2018 83.1 - -

This paper - 86.4 45.3 69.2

military, law, politics, etc.) with 36 indoor scene classes. Note that some indoor
scene categories are shared across different scene hierarchies. Table 2 shows the
results obtained using the standard RGB and our three-stream network on the six
scene hierarchies. Our approach provides significant gains of 7.1%, 6.0%, 10.0%,
3.8%, 7.5% and 7.3% on the six scene hierarchies (shopping/dining, Workplace,
home/hotel, transportation, sports/leisure, and cultural), respectively. Figure 4
shows example images from different indoor scene categories from the SUN-397
dataset on which our three-stream architecture provides the biggest improvement
(top) and the biggest drop (bottom), compared to the standard RGB network.

State-of-the-Art Comparison: State-of-the-art approaches employ very deep
hybrid models pre-trained on both the ImageNet and Places datasets. There-
fore, we also combine our late fusion based three-stream network, at the
score/prediction level, with the very deep networks: ResNet-50 architecture [9].
Table 3 shows the comparison. Among existing methods, the works of [10,31]
provide superior performance with a mean classification accuracy of 86.0% on
the MIT-67 dataset. Our approach achieves improved results compared to both
these methods with a mean recognition rate of 86.4%. On the OCIS dataset,
our approach significantly outperforms the existing DRCF-CNN [14] by achiev-
ing a mean accuracy of 45.3%. On the SUN-397 dataset, the best results are
obtained by PatchNets [29] approach. Our approach obtains an average classifi-
cation accuracy of 69.2%.

5 Conclusions

We introduced a three-stream deep architecture for monocular indoor scene
recognition. In addition to the standard RGB, we proposed to integrate explicit
estimated depth and texture streams in the deep learning architecture. We fur-
ther investigated different fusion strategies to integrate the three sources of infor-
mation. To the best of our knowledge, we are the first to investigate fusion strate-
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gies to integrate RGB, estimated depth and texture information for monocular
indoor scene recognition.
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