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Responses to the reviewer comments 
 
We want to thank the scientific reviewers of the MeMAD project for pointing out the weaknesses                
of Deliverable D2.2 Implementations of methods adapted to enhanced human inputs in the             
project’s second intermediate review. Based on the identified shortcomings and other           
recommendations, we have been able to improve the deliverable in a number of ways including: 
 

1. We have added comparisons to state of the art methods and results when possible. 
2. We have emphasised and detailed the collaboration of the partners. 
3. We have added a specific Discussion section for self-critical reflection where the 

applicability of the methods has been discussed . 
 

We answer to the detailed criticism as follows (the reviewer comments are numbered and in               
italics, whereas our responses are alphabetised and in regular font): 
 

1. D2.2 describes the "Implementations of methods adapted to enhanced human inputs". In            
addition to the main description it includes summaries of Master Theses and scientific             
papers. The deliverable was submitted in time. There are various typos and grammar             
issues. 

a. We have updated and improved the text and paid special attention to correcting             
typos and grammar issues and harmonising the style of writing.  
 

2. All in all, only parts of the deliverable are of sufficient quality. The actual findings and                
research results fall short when compared to the corresponding state of the art. A strong               
point of this deliverable is the joint code and service repository. 

a. We have added new evaluations and comparisons so that the visual domain and             
audio domain parts of the project are supported with comparison to the state of              
the art and we show good performances on a broad set of tasks.  

b. For the face recognition task, our innovation is in the application of SOTA             
methods which combine MTCNN [14] and FaceNet [15] and their productisation           
via an API. We also evaluate the performance of the detection and recognition of              
known faces on our own broadcast video data which are typically long videos             
(see Table 1).  

c. The facial gender classification method is compared to the SOTA models with            
good results in three benchmark tasks as reported in Table 3.  

d. The performance of our video captioning library has been continuously improving           
and is keeping up with the development of the state of the art as depicted in                
Figure 4.  

e. Speech recognition is evaluated on a new and highly challenging YLE dataset            
gathered as a part of the MeMAD project. Along the evaluations, we observe that              
our proposed models outperform the baseline models (see Table 5) and our            
Lingsoft ASR software outperforms the Google ASR (see Table 4) in Finnish and             
Swedish. 
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f. We have added a new Discussion section where we emphasise the importance            
of applying the methods to the partners’ own media assets in addition to standard              
benchmark datasets. 
 

3. The approach for face recognition only works for people who are considered celebrities,             
i.e., for people for whom a Google image search produces at least 50 photos. It remains                
unclear how this approach can be generalised, if at all. 

a. First, we used the word “celebrities” following a media archive descriptions           
centric definition, where celebrities are notable people in the similar vein that the             
notability criteria of Wikipedia . In the revised version of the deliverable we have             1

rephrased some passages accordingly to avoid confusion. 
b. Second, our method has also been extended to recognize people who are rarely             

seen in visual archives. Our system needs a number of sample images depicting             
a person (without necessarily naming this person). It is now possible to bypass             
the crawling stage (that relies on the Google image search engine) and to extract              
few photos of an unseen person within the video itself. 

c. Consequently, we believe our method can be easily applied to recognize people            
who are rarely seen in visual archives or to recognize people within a single              
video. 

d. Following this, we performed two experiments and we proposed a new ground            
truth dataset in Section 3.1 with results reported in Table 2. 
 

4. In Section 3.3.1 ("Paragraph-length image captioning") it is mentioned that: "It can be             
seen that the generated captions read and match the actual image content quite well."              
While certainly true for this specific example, this statement contradicts the findings of             
D5.2, which are much more pessimistic when it comes to the overall quality of              
machine-generated video descriptions. 

a. The tone of the sentence has been changed to be less optimistic. D5.2 actually              
studied single-sentence captions, but many of the findings for single-sentence          
captions apply also to the multi-sentence captions. The latter, however, have not            
been analysed with an effort equal to that of analysing the single-sentence            
captions in D5.2. 
 

5. The ASR results reported in Section 4.2 have a very high word error rate (25.8 and 41.2)                 
while modern approaches typically have a WER of approx. 4-5. The results reported in              
Table 4 are a bit better but still in the range of 17-20. 

a. Our experiments reported in Tables 4 and 5 are conducted on a challenging             
conversational multispeaker television broadcast YLE test set. This dataset         
contains highly challenging samples and it is gathered as the first domain specific             
dataset in Finnish and Swedish materials. To the best of our knowledge, there is              
no other similar benchmark data that exists in the literature. We present a             
detailed discussion on the properties of the proposed dataset and challenges in            

1 https://en.wikipedia.org/wiki/Wikipedia:Notability  
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Section 4.2.1. Moreover, the word error rates mean different things in different            
languages; therefore, a direct comparison of word error rates appearing in other            
languages is not possible. Instead, we report the performances of our models            
and the baseline model on our dataset (see Table 5). The results show that our               
models have significant improvements over baselines both in Finnish and          
Swedish. We also conduct additional experiments on the same dataset, and we            
compare the performances of the Lingsoft ASR with the commercial Google           
ASR. As reported in Table 4, our system achieves good results compared to the              
Google ASR on our challenging YLE dataset. This dataset is currently available            
for the MEMAD consortium for evaluation purposes, but we are working towards            
opening the evaluation dataset for wider use. 

b. The TED-LIUM benchmark set-up for Table 6 (was Table 4 in the previous             
version referred by the reviewers) was chosen here, because the training and            
test data are all public and the domain of the data is not far from typical TV                 
broadcast material. However, the size of the training data is not huge and thus              
the conventional hybrid DNN-HMMs are still much better than all the end-to-end            
systems that typically need thousands of hours to become comparable in           
performance. Unfortunately, there are no such huge public training data with a            
compatible domain. The focus of this piece of research work was not to improve              
the current state-of-the-art in English ASR, but to pave the way to develop better              
methods for the future multimodal models that will most likely require end-to-end            
training. For that perspective, this experiment to compare methods that embed           
speaker information in ASR is indicative despite the size of the models and the              
training data. 
 

6. With regard to the multimodal approaches (Section 5), no real progress has been made              
but rather preliminary steps. Section 5.3 mentions that the approach for "person            
re-identification and re-referencing" is not fully automatic, which begs the question if/how            
this approach can be embedded into the prototype. 

a. Many of the results reported have indeed been preliminary steps, but the work             
has been continued and will be reported in full in the forthcoming Deliverables             
D2.3 and D6.9. 

b. The person re-identification and re-referencing approach cannot be applied to all           
programs, but it can be applied to a substantial subset of them, for example to               
series programs and news broadcasts where at least some of the persons            
appear repeatedly. We assume that in such cases it will be sufficient to annotate              
only some appearances of the reoccurring persons. 

c. The prototype will have some functionality to support person identification with           
human effort for the processing of programs where this functionality is needed.  
 

7. The success of the cooperation among all partners should have been reflected in a              
comprehensive and convincing report. Unfortunately, D2.2 does not match the quality of            
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other deliverables. It leaves many questions open about the efficiency (or effort) granted             
to have MeMAD work together as a team to deliver outstanding results. 

a. Throughout the project and within WP2, the project partners have collaborated           
strongly in many parts, but the original version of the deliverable failed to             
emphasise this sufficiently. We have updated and revised our deliverable to           
clarify these collaborations in detail.  

b. The data provided by INA, YLE and SURREY is used for evaluating a number of               
tools developed by EURECOM, AALTO and Lingsoft on various tasks such as            
face recognition, gender classification, speech recognition and video captioning. 

c. The face recognition tool has been improved through a joint effort of EURECOM             
and AALTO for enabling the recognition of both “celebrities” as well as            
non-named but recurrent persons in videos.  

d. EURECOM and AALTO joined the TRECVID competition individually in 2019 and           
this gave the groups a chance to compare their systems against each other in a               
competition. They also joined their effort in the MediaEval 2019 competition. 

e. In addition to collaborations conducted solely in visual-based and audio-based          
approaches, almost all project partners have collaborated in the work on person            
re-identification and re-referencing described in Section 5.3. 
 

8. All in all, the reviewers miss some honest self-criticism of how the work was undertaken               
and a clear path towards making the tools useful and performing against similar             
approaches. We also would have expected the authors to elaborate on the conclusions             
of the results of doing the joint approaches and how that will be impacting future actions. 

a. We have added a new Discussion section where we discuss the relation of our              
results with respect to the state of the art and the importance of applying them on                
the MeMAD project’s own video collections. 

b. The collaboration of the project partners has been detailed in many parts of the              
revised deliverable. The importance of the collaboration for the obtained results           
and for the completion of the project has been emphasised in the Discussion             
section. 

c. In the Discussion section we deliberate that even if some of the ambitious goals              
of the project may likely not be met, we have already gained extremely valuable              
insights into the applicability of each of the analysis components alone and in             
combination with others. Some of these applicability issues can still be resolved            
during the MeMAD project, whereas others will remain to be solved in the future              
by the multimedia research community as a whole. 
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Raphaël Troncy EURECOM raphael.troncy@eurecom.fr

Anja Virkkunen AALTO anja.virkkunen@aalto.fi

Internal reviewers in alphabetical order

Name Beneficiary e-mail

Maija Hirvonen UH maija.hirvonen@helsinki.fi

Maarit Koponen UH maarit.koponen@helsinki.fi

Abstract

This deliverable describes the second development iteration of the joint collection of libraries
and tools for multimodal content analysis from AALTO, EURECOM, INA, Lingsoft, LLS and
Limecraft. Based on the methods’ primary input domain, they have been grouped as vi-
sual (facial person recognition, facial gender classification and video description), auditory
(speech and gender segmentation, speech recognition and speaker identification and diarisa-
tion) and multimodal (audio-enhanced captioning, visual–auditory gender classification, per-
son re-identification and multimodal speech recognition) approaches in this report. Special
attention has been on methods that combine different modalities and bring human knowledge
as input to the learning system. As part of this deliverable, the existing open source compo-
nents gathered into a joint software collection of tools and libraries have been updated and
new components have been added. This deliverable also summarises in an appendix the dis-
semination activities related to the research work in MeMAD’s Work Package WP2 during its
second year. Finally, the abstracts of five academic theses together with full texts of ten scien-
tific publications appear at the end of the report. These appendices describe the technological
advances related to the software components of MeMAD Task T2.2 in further detail.

MeMAD – Methods for Managing Audiovisual Data
Deliverable 2.2
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1 Introduction

This deliverable describes the second development iteration of the joint collection of libraries
and tools for multimodal content analysis from AALTO, EURECOM, INA, Lingsoft, LLS and
Limecraft. The majority of the tools have their roots in the research and development work of
the parties before the MeMAD project, but they have been developed further during the first
two years of the project. In addition, the partners have just created tools specifically for the
project, and most importantly these tools combine the unimodal outputs from the different
parties’ systems into multimodal approaches.

Following the aim of the MeMAD project, special attention has been on methods that bring
human knowledge as input to the learning system. The tools and libraries described in the
current document are needed in the continuation of Work Packages WP2, WP3 and WP5, and
also in Task T6.2 Prototype implementation.

In the next section, the role of Task T2.2 and the requirements for this deliverable according
to the MeMAD project’s Description of Action are first revisited. Then, we briefly describe the
visual, auditory and multimodal approaches in Sections 3, 4 and 5 , respectively, followed by
a discussion on the strengths and shortcomings of the approaches in Section 6. Finally, in
Section 7, we include an updated summary of the components and the open source collection
of software that form the primary contents of Deliverable D2.2.

Appendix A summarises the dissemination activities related to Work Package WP2 during the
second year of the MeMAD project. At the end of this report, in Appendix B, we have included a
set of theses and scientific publications or their drafts that describe the technological advances
made in the project.

2 The role of Task T2.2 in the MeMAD project

The aim of MeMAD Work Package WP2 Automatic multimodal content analysis is to develop the
tools and libraries that AALTO, EURECOM, INA, Lingsoft, LLS and Limecraft have previously
created for multimodal analysis, description and indexing of audio and video content. These
tools include speech recognition, speaker recognition and diarisation as well as visual and
audio description techniques in both uni- and multimodal domains.

Task T2.2 Using human input to multimodal content analysis has been the next step in de-
veloping these automatic multimodal content analysis tools. The work in this task has been
carried out in close collaboration with work in Work Package WP5 and its tasks T5.1 Multi-
modal annotation of described video and T5.2 Key characteristics of human and machine video
description with regard to the human needs and ways of describing multimodal content to
humans. The work of T2.2 contributes to a better understanding of the theoretical concepts
relating to multimodal content analysis and to knowledge of what aspects of multimedia con-
tent can be captured by automatically extracted features and from existing metadata. This
understanding will be needed in remaining work of Work Package WP2 and in Task T6.2 Pro-
totype implementation.

This report accompanies the software components stored in a GitHub repository with brief
descriptions and evaluations of their use. The address of the GitHub repository is:

https://github.com/MeMAD-project/mmca
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3 Visual domain

For the description of the visual content of media, several technical components are needed.
These have been developed in tight collaboration between the project partners, making use of
each partner’s special expertise. In this section we report the development of the previously
existing and newly created tools and libraries for different types of visual analysis. We start
in Section 3.1 by describing EURECOM’s new facial person recognition tools that replace their
earlier tools introduced in MeMAD Deliverable D2.1. Next, in Section 3.2 we introduce INA’s
novel facial gender classification library. Finally, Section 3.3 describes the developments in
AALTO’s and EURECOM’s approaches to image and video content description with single-
sentence and paragraph-based captioning.

3.1 Facial person recognition

People are undoubtedly an important cue when watching a video. Knowing who appears in
a video, when, where and with whom, can reveal interesting patterns of relationships among
characters of a movie or a news program. Such person-related annotations are useful for
facilitating multimedia search and re-use of video content.

Figure 1 shows an example in which both Emilie Tran Nguyen and Markus Preiss are suc-
cessfully recognised in a political debate program broadcasted by YLE.

Figure 1: An example of face recognition for broadcast video material.

Related work. During the last decade there has been substantial progress in the methods for
automatic recognition of individuals. The recognition process generally consists of two steps.
First, faces need to be detected in a video, i.e. which region of the frame may contain a face.
Second, those faces can be recognised, i.e. to whom a face belongs.

The Viola-Jones algorithm [11] for face detection and the Local Binary Pattern (LBP) fea-
tures [12] for the clustering and recognition of faces were the most famous methods until
the advent of deep learning and convolutional neural networks (CNN). Nowadays, two main
approaches are used for detecting faces in video and both use CNNs. One implementation
is available in the Dlib library [13] and provides good performance for frontal images, but it
requires an additional alignment step before the face recognition step can be performed. The
recent Multi-task Cascaded Convolutional Networks (MTCNN) [14] approach provides even
better performance using an image pyramid approach and using face landmarks detection for
re-aligning the detected faces to the frontal orientation.

After locating the position and orientation of the faces in the video frames, the face recog-
nition process can be performed. There are several strategies available in the literature for

MeMAD – Methods for Managing Audiovisual Data
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face recognition. Currently, the most practical approach is to perform face comparison using
a transformation space in which similar faces are mapped close together, and to use this rep-
resentation to identify individuals. Such embeddings, computed on large collections of faces
have been made available to the research community, such as the popular FaceNet [15].

In [16], MTCNN and FaceNet are used in combination and tested with eight public face
datasets, reaching a recognition accuracy close to 100% and surpassing other methods. These
results have been confirmed in several surveys [17, 18] and in recent works [19]. In addition,
MTCNN has been recognised to be very fast while having good performance [20].

Our approach. Given the almost perfect performance of the MTCNN + FaceNet face recog-
nition setups, our work focuses on setting up a system built upon these technologies which is
suitable for the context and data of the MeMAD project. In this perspective, our contribution
does not consist in a new state-of-the-art performance in face recognition, but of the applica-
tion of face recognition to MeMAD broadcast videos provided by INA and YLE. The MeMAD
Face Recognition library, mainly developed by EURECOM with contributions from AALTO and
other MeMAD partners, is made of the following modules:

• A crawler which, given a person’s name, automatically downloads a set of k photos using
Google’s image search engine that will be used for training a particular face model. Among
the results, the images not containing any face or containing more than one face are
discarded. In our experiments, we have typically used k = 50.

• A module for extracting face embeddings, where photos or video frames are converted
to greyscale, cropped and resized to obtain images containing only a face. The module
uses the MTCNN algorithm [14] for face detection. A pretrained FaceNet [15] model
with Inception ResNet v1 architecture trained on the VGGFace2 dataset [21] is applied for
extracting visual features or embeddings of the faces.

• A clustering module where the face embeddings from one or more video programs are clus-
tered for finding sample facial images of the persons frequently appearing in the footage.
The module uses the simple agglomerative complete-linkage clustering available in the
SciPy Python library. The sample images and their corresponding clusters can be labeled
with human effort in cases when the crawler module cannot be used to obtain representa-
tive samples of the individuals appearing in the videos.

• A classifier training module that uses the face embeddings of the known individuals to
train a multi-class SVM classifier for the recognition of these persons’ faces.

• A recognition module which takes a video as input and extracts frames from it with a
preset skipping distance d. For each extracted frame, faces are detected using the MTCNN
algorithm and their FaceNet embeddings are computed. The SVM classifier then decides if
the face matches any one among the training classes with a given confidence threshold t.
In our experiments, we have used d = 50 and t = 0.6.

• Finally, we integrated a tracking algorithm as the last module. Simple Online and Real-
time Tracking (SORT) is an object tracking algorithm which can track multiple objects in
realtime [22] and its implementation is inspired by the code from Linzaer1. The algorithm
uses the MTCNN bounding box detection and tracks the bounding boxes across frames.
We introduced this module to increase the robustness of the library towards recognition
errors in individual frames for getting more consistent person identifications.

1https://github.com/Linzaer/Face-Track-Detect-Extract
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Program Duration # faces detected # errors Avg. confidence
A-Studio 41:58 9 3 0.80
Eurovaalit 2019, Part 2 1:35:41 1036 11 0.79
Eurovaalit 2019, Part 3 29:18 33 2 0.78

Table 1: Results of the face recognition on three programs: A-Studio broadcasted on 27/05/2019 at 21:00 on
YLE TV1; Eurovaalit 2019: Kuka johtaa Eurooppaa? Parts 2 and 3, broadcasted on 15/05/2019 at 21:55 and
23:30 on YLE TV1.
The MeMAD Knowledge Graph identifiers of those parts are respectively http://data.

memad.eu/yle/a-studio/8a3a9588e0f58e1e40bfd30198274cb0ce27984e, http://data.memad.eu/

yle/eurovaalit-2019-kuka-johtaa-eurooppaa/d9d05488b35db559cdef35bac95f518ee0dda76a

and http://data.memad.eu/yle/eurovaalit-2019-kuka-johtaa-eurooppaa/

0460c1b7d735e3fc796aa2829811aa1ae5dc9fa8

In order to make the software publicly usable, we wrapped it with a Flask server and made
it available as a service2. The service includes two output formats: a custom JSON format
and a serialization format in RDF using the Turtle syntax, so that the results can be directly
integrated in the MeMAD Knowledge Graph. The latter uses the Media Fragment URI syntax
with npt in seconds for identifying temporal fragments and xywh for identifying the bounding
box rectangle encompassing the face in the frame. A light cache system that enables to serve
pre-computed results is also provided.

Evaluation. In the absence of a large and rigorously annotated ground truth for MeMAD
broadcast videos, we performed two experiments for the evaluation of the system: a qualitative
analysis on three videos and a quantitative analysis on a small ground truth dataset created
for this purpose.

a. Qualitative analysis. We run an experiment using face models of the following nine people:
Manfred Weber, Frans Timmermans, Jan Zahradil, Margrethe Vestager, Ska Keller, Nico Cué,
Emilie Tran Nguyen, Markus Preiss, and Annastiina Heikkilä. These people were selected as
they were key persons in the 2019 European Election and some of them were also frequently
present during the 2014 European Election. These two events have been covered by both
INA and YLE in the datasets they have provided to the MeMAD consortium. Hence, we were
confident that those persons are likely to be shown in news programs and political debates that
were broadcasted during the 2019 election period. For each detected person, we manually
assessed whether the correct person was recognised or not. This enables us to evaluate the
precision of the system but not the recall.

The results are presented in Table 1 together with the average confidence of all face recogni-
tion in each program. While the precision of the recognition varies, we observe it is very good
for the Part 2 of the Eurovaalit (European Election) 2019 program.

b. Quantitative analysis. We developed a face recognition ground truth dataset from the
INA videos which are part of the MeMAD video corpus. A list of six people (Nathanaël de
Rincquesen, Elise Lucet, Sophie Le Saint, Laurent Delahousse, Sophie Gastrin, Marie Drucker)
that are frequently present in the MeMaD Knowledge Graph’s video segments was selected.
For each of the 483 segments of duration n frames, we extracted the frames at positions n/4,
n/2 and 3n/4, which led to 355 video segments including one or more faces. From this set,
we manually annotated a ground truth of 100 video segments, among which 55 segments

2http://facerec.eurecom.fr/
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featured one of the six known people and 45 segments did not include any of the specified
people.

A face recognition model trained on those six people was then evaluated on this ground
truth dataset. We varied the confidence threshold under which we considered the face not
matched as shown in Figure 2, and found t = 0.6 to be the optimal value with respect to the
F-score. The details of each person class are reported in Table 2.

We made the following observations:

• The library generally fails to detect people when they are in the background and their faces
are therefore relatively small.

• When faces are perfectly aligned in frontal orientation, they are easier to detect.

• We did not encounter cases where one known person was confused with another known
person.

• Most errors occurred when an unknown face was recognised as one of the known people.

Our implementation relying on multiple off-the-shelf Python components has been made
available at https://github.com/D2KLab/Face-Celebrity-Recognition/.
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confidence treshold

0.2

0.3

0.4

0.5

0.6

0.7

sc
or

e

precision
recall
f-score

Figure 2: Precision, recall and F-score of the Face Recognition system on different confidence thresholds.

Person Precision Recall F-score Support
Le Saint, Sophie 0.67 0.80 0.73 10
Delahousse, Laurent 0.43 0.60 0.50 5
Lucet, Elise 0.71 0.50 0.59 10
Gastrin, Sophie 0.86 0.60 0.71 10
Rincquesen, Nathanaël de 0.43 0.80 0.55 10
Drucker, Marie 0.60 0.90 0.72 10
– unknown – 0.52 0.38 0.44 45
average excluding unknown 0.63 0.71 0.64 55

Table 2: Precision, recall and F-score for each class and aggregate results. The support column reports the
number of segments involving the person.
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3.2 Facial gender classification

Face gender information is a robust low-level descriptor which can be used to describe au-
diovisual content. It can be used to facilitate gender balance considerations during document
search procedures, to monitor the gender balance of audiovisual productions, and to combine
gender presence in media with user preferences.

The work realised at INA within the MeMAD project is fully described in Zohra Rezgui’s
Master’s Thesis report [23] available online3. A face detection and tracking pipeline was
realised, which makes it possible to detect faces, lower the computation time associated with
face detection through tracking, and average gender classification predictions over tracked
faces associated with the same character.

Three face datasets were used to train and evaluate the performance of face gender detection
models realised in the work of MeMAD Task T2.2:

Labeled Faces in the Wild (LFW): A collection of 13,000 photos from the internet [24].

YouTube Faces Database (YTF): A collection of 621,126 frames obtained from YouTube
videos. The images are organised based on the character identity (1595) and recording
session (3425) [25]. All characters found in YTF are also present in LFW.

Adience: A collection of 26,580 photos obtained from the social media service Flickr, corre-
sponding to 2284 distinct characters [26].

Since YTF was the only dataset obtained from video streams, it was considered as the most
representative dataset with respect to the MeMAD use cases. During experimentation, we de-
fined a subset of the YTF and LFW characters for training, and a different subset of characters
for testing. This was done in order to avoid having the same character in the training and test
sets, including the case of cross-corpora evaluation.

The first set of experiments was aimed at measuring the impact of the width of the face
bounding boxes for the task of gender classification. We found that using larger bounding
boxes benefited the gender classification task. Some facial features which are undesirable for
identity detection (such as hair) located near the boundary of face bounding boxes provide
better performance for the task of gender description. This finding was consistent with other
studies found in the literature [27]. As a result, for optimal performance, it seems one should
use different bounding box sizes and neural representations for the identity and the gender
classification tasks. Best results were obtained in the gender classification task by using pre-
trained VGGFace neural models, combined with a linear SVM.

Table 3 presents a comparison of our implementation to two open source frameworks and
results published in the literature. The face gender classification results obtained using INA’s
implementation were better than those obtained with available open source implementations
for YTF and LFW. This is overall a positive outcome and shows that the implementation is
close to the state of the art. Exhaustive comparison to results published in the literature was
difficult, since most studies found were based on the use of a single corpus, which may lead
to systems over-fitting to a given dataset (see Table 3 and appendices of [23]).

Lastly, we reproduced a study which involved fine-tuning of neural face representations
originally aimed for face identification to the task of gender classification [31]. We obtained
similar improvements on the dataset used for training, but these improvements resulted in
a decrease of performance on datasets that were not used for training. Consequently, we
considered this approach to over-fit with a particular dataset.

3https://www.researchgate.net/publication/337635267_Rapport_de_stage_Detection_et_classification_de_visages_

pour_la_description_de_l’egalite_femme-homme_dans_les_archives_televisuelles
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YTF LFW Adience
INA’s implementations

trained on YTF 95.37 96.97 80.33
trained on Adience 89.45 92.00 80.26

Open source implementations
CVLib 52.79 80.54 58.55
Scanner 88.05 93.28 95.15

Results published in research papers
[28] – 97.31 –
[29] – – 67.10
[30] – 91.75 83.06

Table 3: Comparison of INA’s face gender classification results to open source implementations and results
found in research papers.

3.3 Single and multi-sentence video description

Image and video description entails automatically generating a short text or caption that de-
scribes the visual contents using only the image or video itself as the input. At AALTO and
UH, the development of visual captioning techniques has been continued in three parallel
tracks. First, we have studied and developed further neural network architectures for gener-
ating paragraph-length image captions (Section 3.3.1). Second, we have implemented and
studied reinforcement learning based optimization methods for training image and video cap-
tioning models (Section 3.3.2). Third, we have addressed the task of visual storytelling where
series of images are described with textual narratives as output (Section 3.3.3). In EURECOM,
the development of video captioning has been based on utilizing curriculum learning as a
method for enhancing the training of an embedding based captioning model (Section 3.3.4).

In addition to the research directly related to captioning, researchers at AALTO have con-
tributed to the wider research area of image and video description with three conference
papers on dense captioning [8], indoor scene recognition [9] and human-object interaction
detection [10]. These works are attached in Appendix B of this report.

3.3.1 Paragraph-length image captioning

Arturs Polis’ Master’s Thesis [32] explores three variations of the encoder-decoder neural net-
work architectures for generating paragraph-length image captions. These include both flat
and hierarchical models, where the former consist of a single level of one recurrent neural
network (RNN) and the latter of multiple levels of RNNs in a hierarchy. The benefit of using
a hierarchy comes from the top-level RNN that is able to separately keep track of the sentence
context.

The flat model studied was based on the original Show and Tell [33] architecture, the basic
hierarchical model was the architecture proposed by Krause et al. [34], and the last one was
the Diverse-Coherent hierarchical model from [35]. The coherent model extends the basic
hierarchical model by adding a mechanism for allowing the gradients to flow directly from
the last word of the previous generated sentence to the next sentence via a special coherence
vector.

The experiments were carried out using image-level MS COCO [36] captions, region-based
Visual Genome [37] captions, and paragraph-level captions from the recently introduced
Stanford-Paragraph dataset [34]. DenseCap [38] and ResNet-152 [39] were used as visual
features. The results of the experiments showed that with some modifications to the baseline
flat model one could obtain results that exceeded the earlier reported flat paragraph caption-
ing scores. The fluency of the output from the hierarchical-coherent model seemed to be
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Figure 3: A video frame from the movie 500 Days of Summer. The caption generated by AALTO’s original
captioning model is: “A group of people standing around a kitchen counter.” The coherent hierarchical paragraph
captioning model generated: “People are sitting around a table in a restaurant. They are all dressed nicely. One
of the women is wearing a dark shirt and pants. The other man is wearing a light green shirt with a short sleeve
shirt. The glasses are on the table and filled with glass and filled wine. Most of the bottles are almost empty.”

somewhat higher than that of its flat counterpart, but this was not clearly captured in scores
produced by the standard automatic metrics, such as METEOR [40] and CIDEr [41].

An example of the hierarchical-coherent paragraph captioning model being applied to movie
content is shown in Figure 3 together with a caption generated with an earlier single-sentence
model trained with MS COCO and TGIF [42] data. It can be seen that the generated captions
read well and match the actual image content in this particular case quite well. Unfortunately
that is not the case for all shots as the model often generates inaccurate captions similarly to
our original single-sentence models.

The full details of the methods studied, experiments and their results are documented in
Arturs Polis’ Master’s Thesis [32] available online4. Its abstract has additionally been attached
to this report in Appendix B. All the methods studied for paragraph-length image captioning
have been implemented and integrated in the DeepCaption Python library. In addition, the
best-performing models studied for both standalone DeepCaption and PicSOM-integrated use
setups have been made available.

3.3.2 Deep reinforcement video captioning

Héctor Laria Mantecón’s Master’s Thesis [43] studies the use of reinforcement learning for
training image and video captioning models. Deep reinforcement learning based techniques
have already been found to be very competitive training methods in many application areas of
machine learning. In video captioning, for example in the TRECVID 2018 evaluation, the best
results have been obtained with reinforcement learning [44].

Traditional cross-entropy loss based training for captioning models causes two major prob-
lems. First, the traditional approach inherently presents exposure bias because the model is
only exposed to human-written descriptions, not to its own outputs, which causes an incre-
mental error in test time. Second, the ultimate objective is not directly optimised because
the scoring metrics cannot be used in the procedure as they are non-differentiable. New ap-
plications of reinforcement learning algorithms, such as self-critical training, overcome the
exposure bias because they directly optimise non-differentiable sequence-based test metrics,
such as CIDEr [41] and METEOR [40].

4https://helda.helsinki.fi/bitstream/handle/10138/304686/arturs_polis_thesis_final.pdf
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Figure 4: The performance of the PicSOM and EURECOM teams in TRECVID 2019 VTT task (blue bars)
compared to the PicSOM team’s best submission in 2018 (“b1”) and best post 2018 workshop result (“b2”). Red
results are PicSOM team’s developments after TRECVID 2019. Higher CIDErD score is better.

The self-critical reinforcement learning approach studied in the thesis was applied when
Aalto University’s PicSOM team participated in the TRECVID 2019 Video to Text Description
(VTT) task [1]. Thanks to self-critical training, we made substantial progress compared to both
the submission of year 2018 and to the post-workshop experiments reported in our previous
workshop paper. However, the other teams had likewise improved the performance of their
approaches, and compared to the best level of performance obtained by the participating
research groups, we were still behind the lead.

Figure 4 shows how the four submissions by the PicSOM team (“s1” to “s4”) are clearly
better in CIDErD scores than the results obtained with the best model of 2018 (“b1”) and the
best model studied after the 2018 workshop (“b2”). The submissions “s1” and “s4” differ in
the fact that the former used also self-critical reinforcement learning, whereas the latter only
used cross-entropy loss. Submission “s2” and “s3” differ from “s1” in their different selection of
visual features used. The best result was obtained when both MS COCO and TGIF datasets and
both video and still image features were used in training the captioning model. However, the
benefit of using video features was found to be minor. In Figure 4, the red bars indicate two
results obtained after the TRECVID 2019 workshop: “a2” with enhanced self-critical training
and “a1” with the VATEX video captioning dataset [45] used as additional training data. We
can see that with these two improvements the PicSOM team’s captioning results approach the
state of the art.

The full details of the methods studied, experiments and their results are documented in
Héctor Larian Mantecón’s Master’s Thesis [43] available online5. Its abstract has additionally
been attached to this report in Appendix B. The self-critical reinforcement learning technique
has been integrated in the DeepCaption Python library, and is available in MeMAD’s GitHub
repository together with pretrained models for PicSOM-integrated use of the library.

5https://aaltodoc.aalto.fi/bitstream/handle/123456789/39942/master_Laria_Mantec%c3%b3n_H%c3%a9ctor_2019.pdf
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3.3.3 Visual storytelling

The topic of Aditya Surikuchi’s Master’s Thesis [46] is visual storytelling. Given a sequence
of images as input, the visual storytelling task is about building a model that can generate a
coherent textual narrative as output. An image sequence would typically be a group of images
portraying an event or an episode, and the output story could be up to fifty words long, with
an average of ten words per image in the input sequence. This task has gained popularity as
a research topic since the publication of the VIST dataset [47] and the first Visual Storytelling
Challenge6 in 2018.

Five visual storytelling models found in the research literature were either implemented
from scratch or obtained as open source implementation. In addition, two models developed
by the author were studied. The best results were obtained with the author’s modified AREL
model [48] which used Generative Adversarial Networks (GAN) [49] objective in its training.

Figure 5 displays one example of visual stories generated by the AREL GAN model. It can
be seen that the five-sentence story generated for the five images in the sequence is able to
describe the visual contents of the images and produce fluent narrative quite well. There is,
however, unnecessary repetition in the story, but some of it can also be associated with the
repetition in the visual contents of the images.

The full details of the methods studied, experiments and their results are documented in
Aditya Surikuchi’s Master’s Thesis [46] available online7. Its abstract has additionally been
attached to this report in Appendix B. The code for various visual storytelling models studied
in the thesis has been made available in MeMAD’s GitHub repository together with pretrained
storytelling models.

Figure 5: A visual story generated by the AREL GAN model: “There were a lot of people at the convention
today. Everyone was there to support the event. The speaker gave a speech about the students. The speaker gave
a speech. After the presentation, the speaker gave a speech to the audience.” [46]

3.3.4 Embedding-based captioning

After participating in the matching task of TRECVID VTT in 2018, EURECOM participated in
the description generation task in TRECVID 2019. The method was developed by Danny Fran-
cis in his PhD Thesis [50] on image and video captioning. EURECOM submitted an embedding-
based captioning run, using curriculum learning instead of a simple gradient descent to train
the model.

The idea behind curriculum learning is to present data during the training in an ascending
order of difficulty: the first epochs are based on easy samples, and after each epoch, more diffi-
cult samples are added to the training data. We computed a difficulty score for a given sample
composed of a video and the corresponding caption as follows: the caption is translated into a
list of indices so that the larger the index value is, the less frequent is the corresponding word.
The difficulty score of the sample is then the maximum index value of its caption. Once the
samples were scored, we trained the model by starting with an easy subset of the training data
and added more complex samples after each epoch. Video features were extracted with the

6http://www.visionandlanguage.net/workshop2018/index.html#challenge
7https://aaltodoc.aalto.fi/bitstream/handle/123456789/41756/master_Surikuchi_Aditya_2019.pdf
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I3D neural network [51], input to a fully-connected layer and then processed by a GRU [52]
to generate the captions. Cross-entropy loss was used for training the model.

As seen in Figure 4, the performance of the EURECOM run (“e1”) is below average. How-
ever, multiple ways to improve this performance can be explored, such as different scoring
methods or finer curriculum learning algorithms. Moreover, more complex embedding-based
approaches such as the spatio-temporal one developed in [7] and presented in Danny Francis’
PhD Thesis [50] could be employed in future work.

4 Auditory domain

For the description of the audible content of media, several technological tools have been made
available. The methods can be divided into detection and recognition of speech, speaker and
language identification and recognition of other audio events, such as noise or music. In
speech recognition the efforts in the first year of MeMAD were focused on accurate automatic
transcription of relatively good quality broadcast speech that has a large vocabulary and mul-
tiple genres. Now in the second year, the focus has been on the end-to-end approach, which
means that instead of separately trained acoustic, lexical and language models, there is only a
single model. This is an important step towards the integration of multiple modalities into a
single model. The speaker identification and diarisation provides useful information for both
the video segmentation and speech transcripts. Here we have also focused on developing a
deep neural network (DNN) based system where speakers are represented as embeddings. We
have also shown that the same speaker embedding developed for speaker verification is an
effective tool for adapting the speech recognizer for new speakers. During the second year of
MeMAD, the audio event classifier was not developed further as we wanted to see first how it
integrates with the visual features (see Section 5.1).

4.1 Speech and gender segmentation

INA has improved their inaSpeechSegmenter software to take also noise sound events into
account, whereas the older implementations used to take only speech and music into account.
The MUSAN database was used to gather examples of noise sound events [53].

In the work for MeMAD Task T2.2, inaSpeechSegmenter was used to process about one mil-
lion hours of INA’s audiovisual content, and to describe the evolution of French audiovisual
landscape from the gender perspective. These analyses resulted in publications which met a
very positive reception and visibility in the French media [3, 4].

4.2 Speech recognition

4.2.1 Creation of a domain-specific broadcast media evaluation set for speech recognition and
diarisation for Finnish and Swedish

In 2019, Lingsoft has produced detailed transcripts of a challenging conversational multi-
speaker broadcast media dataset (YLE MeMAD broadcast dataset) to be used as a gold stan-
dard evaluation dataset of automatic speech recognition (ASR) and diarisation both in Finnish
and Swedish in the MeMAD domain. The content is intentionally selected to be diverse to
include multispeaker discussion programs, election panel discussions, interviews in different
environments (moving car, outside) to measure the speech recognition result in actual use
cases. Often the speakers are talking over each other and there is background noise and mu-
sic, which all make the speech recognition task more difficult. The programs also contain a
variety of topics. In the Finnish set, the topics range from a magazine program devoted to
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consumer issues in which e-bikes and driving school are discussed, to talk show type current
events discussion programs and European Parliament election debates. In the Swedish set,
there are also current events talk shows, European Parliament election debates, and a craft
and cooking show, each with a variety of different topics.

To our knowledge, such a domain specific material has not been available previously for
Finnish or Swedish. Previously AALTO and Lingsoft have used an older YLE news broadcast
dataset, which is generally easier: For example, there is only one speaker speaking at a time
who articulates well (the news anchor) etc.

The main language of the Swedish programming in the test set is Finnish Swedish, the vari-
ant of Swedish spoken in Finland. This poses an additional challenge to the Swedish speech
recognition models, developed with Swedish spoken in Sweden, as there is little training ma-
terial available in the Finnish Swedish dialect. This test dataset also includes short sentences
in other languages, such as Finnish or English.

The length of the Finnish test set is approximately 5 hours (7 different program items) and
the test set contains 1345 sentences in total. The test data have been split into separate audio
files at speaker changes, by the transcribers of the test sets. The length of the Swedish test set
is approximately 5.5 hours (9 different program items) it contains 1466 sentences in the test
set.

This evaluation dataset is available for the consortium for evaluation purposes. We are work-
ing towards opening the data for wider use: The annotations (e.g, time codes and annotations
for speaker changes, music or background noise) can be more freely shared, but sharing the
audiovisual material requires the permission from all the rights-holders (not limited to YLE),
which requires a considerable effort. While sharing the annotations is more straightforward,
they only have very limited use for the evaluation of ASR without the accompanying audio
data. The MeMAD project has obtained a special permission from the all rights-holders of the
audiovisual material for their use in the MeMAD project.

4.2.2 Finnish and Swedish ASR results on the challenging YLE test set

Lingsoft continues to provide its ASR in Finnish and Swedish for the use in the both via Lingsoft
Speech Service API and integrated to the Limecraft Flow platform for the prototype. As the test
set is currently limited only for the use of the MeMAD consortium, and no benchmarks as such
exist, we tested the Lingsoft speech recognition against the commercially available Google
ASR, which is generally thought to be of good quality. Table 4 summarises the comparison
results, where the Lingsoft speech recognition shows clear improvements over Google ASR.

In the Finnish test set, the Lingsoft model generates an empty output for 23 sentences,
whereas the Google benchmark model returns an empty output for 304 sentences. In addition,
the Google recognizer did not recognise files that were longer than one minute, even when
following the Google API instructions, hence there is a difference in the number of sentences
tested between the Google ASR benchmark model and the Lingsoft recognizer. The difference
should not affect the relative number of recognition errors, though. In Swedish, the number
of sentences not recognised at all is 98 for Lingsoft and 520 for Google. For normalization
purposes, numbers have been not spelled out but written as digits. shrunk (writing “6” instead

Recognizer Number of sentences Number of words Word error rate

Lingsoft/Finnish 1323 36871 25.6
Google/Finnish 1041 33018 40.0

Lingsoft/Swedish 1368 48900 41.2
Google/Swedish 946 37530 54.6

Table 4: Word error rate results for benchmarking Lingsoft ASR (no RNNLM) with Google ASR.
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of “six”, for example) in both speech recognition results, as Google’s speech recognition does
not support the expanded form. In addition, punctuation and capitalization have been ignored
in the comparison.

The ongoing development in 2019 of the Lingsoft Finnish ASR has included the accommoda-
tion of state-of-the-art neural network based acoustic modelling, improvements in the position
dependency of phonemes, and recurrent neural network language modeling (RNNLM) [54]
to rescore the first-pass decoded lattices.

The baseline Finnish and Swedish ASR systems have been evaluated against the improved
systems with the YLE data described in more detail above. Word error rates (WERs) of the sys-
tems and development between the baseline and the current version are presented in Table 5.
During 2019, small improvements have been achieved on top of major development in 2018.
As with the results presented earlier, punctuation and case sensitivity have been ignored when
computing the error rates.

Language Baseline Improved (2019) Improved
+ RNNLM

Finnish 31.3 25.8 24.4
Swedish 56.0 41.2 –

Table 5: Lingsoft ASR: word error rate improvements in 2019

4.2.3 Speaker-aware training for end-to-end speech recognition

In recent years, a paradigm of speech recognition using a single model, which is optimised
end-to-end, has become viable. Particularly encoder-decoder models with attention [55, 56]
have been successful, although it seems that on standard academic benchmarks, conventional
HMM-DNN architectures still prevail [57]. AALTO has also followed this line of research as
it offers an attractively simple training scheme and joint optimisation of the whole system.
Furthermore, in the context of creating multimodal models, end-to-end speech recognition
models are a necessary starting point when building larger multimodal end-to-end systems.
For example, they share a lot of similarities with machine translation architectures, making
end-to-end speech translation models feasible.

Specifically, AALTO has worked on speaker-aware training of end-to-end speech recognition.
In speaker-aware training, speaker embeddings are appended to the input features, and the
model learns to use this information to adjust to, and thus be more robust to, differences
between speakers. This work leveraged AALTO’s parallel work in speaker identification and
diarisation.

The experiments that were conducted show that separately optimised speaker embeddings
(so-called i-vectors and x-vectors) currently outperform a previously proposed [58] fully end-
to-end sequence summary network method. Table 6 shows a subset of the results on the TED-
LIUM corpus [59], which consists of TED-talks and is the basis for a lot of recent work in speech
translation. Additionally, speaker embedding models trained on the large VoxCeleb [60, 61]
corpora were used. These datasets are freely available. As the VoxCeleb training performs
better than simply training embedding models on the fixed dataset, AALTO proposes speaker-
aware training as a viable strategy to incorporate untranscribed data into the end-to-end ASR
paradigm. A conference article describing the experiments was published in the ICASSP 2020
conference proceedings [62], and also included as Appendix B.6. The implementation of the
experiments is available online8.

8https://github.com/Gastron/espnet-old-speaker-aware
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The TED-LIUM benchmark set-up was chosen here because the training and test data are
all public and the domain of the data is not far from typical TV broadcast material. However,
the size of the training data is not huge and thus the conventional hybrid DNN-HMMs are still
much better than all the end-to-end systems that typically need thousands of hours to become
comparable in performance. Unfortunately, there are no such huge public training data with
a compatible domain. The focus of this piece of research work was not to improve the current
state-of-the-art, but to pave the way to develop better methods for the future multimodal
models that will most likely require end-to-end training. For that perspective, this experiment
to compare methods that embed speaker information in ASR is indicative despite the size of
the models and the training data.

TED-LIUM Test Dev
No LM +LM No LM +LM

F
ix

ed

Baseline 21.7 18.6 22.6 20.0
SeqSum [58] 21.1 – 21.7 –
i-vector100 20.9 17.9 21.4 18.9
x-vector256 21.5 18.4 23.0 20.0

+
V

ox
C

el
eb

i-vector200-LDA 20.2 17.4 20.7 18.2
i-vector400 20.4 17.2 21.0 18.3
x-vector200-LDA 20.9 17.4 21.6 18.6
x-vector512 20.1 17.2 20.9 18.1
thin-ResNet512 20.7 17.2 21.0 18.3

Table 6: WER results of AALTO’s speech recognition experiments. SeqSum refers to the sequence summary
network approach of Delcroix et al. The embedding methods denote the dimensionality and whether LDA was
used, in the subscript. The +VoxCeleb section presents results with the pretrained VoxCeleb embeddings. The
Fixed section presents results with embeddings trained on the fixed ASR data.

4.3 Speaker identification and diarisation

The task of speaker identification and diarisation is to divide the recordings into single-speaker
segments and recognise the speakers. AALTO has continued to develop their deep learning
model for overlapping speaker detection and online speaker diarisation9. The system consists
of three components. First, the voice activity detector finds speech segments. Second, the
speech segments are divided into two seconds wide overlapping windows and each window
is classified either as single speaker or overlapping speakers. Finally, the speaker embeddings
are computed for each single speaker window and utilised to recognise the speaker identities
and speaker changes. The work has been documented in detail in Tuomas Kaseva’s MSc thesis
[63] available online10. The abstract of the thesis has additionally been attached to this report
in Appendix B. The system was also evaluated in the VOXSRC speaker recognition challenge11

where it reached a very respectable 11th position out of the over 50 entries that were submit-
ted by the challenge deadline. AALTO’s system was published in the ASRU 2019 conference
proceedings [6] and the paper is included as Appendix B.7. The online speaker diarisation is
mainly intended to annotate realtime speech recognition output with speaker change informa-
tion, but it may also become useful in segmenting videos into moments or it can be used as an
input to a video description system.

Lingsoft and LLS have developed a diarisation module for Finnish and Swedish. The di-
arisation module is accessible via the Lingsoft Speech Service API. The module is based on

9https://github.com/Livefull/SphereDiar
10https://aaltodoc.aalto.fi/bitstream/handle/123456789/39063/master_Kaseva_Tuomas_2019.pdf
11http://www.robots.ox.ac.uk/~vgg/data/voxceleb/competition.html
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open source software and performs fast diarisation using a deep neural network that maps
variable-length utterances to fixed-dimensional embeddings called x-vectors [64]. The module
is language independent, but as diarisation results are of little use without the accompany-
ing speech recognition result, the module incorporates a speech recognition result in Finnish
or Swedish and the corresponding diarisation. In Table 7, we report diarisation error scores
(DER) with and without Variational Bayes resegmentation, which improves results, but is also
resource intensive, slowing down the diarisation process, and heavy on memory use. All re-
sults are obtained using the same YLE broadcast media dataset described earlier. Compared to
the ASR evaluation, no splitting at speaker changes was made, but the diarisation evaluation
has been carried out for each full program item (seven program items for Finnish, nine for
Swedish). At this stage, no state-of-the-art comparison for Finnish or Swedish diarisation re-
sults has been made, as to our knowledge, other comparable datasets and results do not exist.
The usefulness of the diarisation results will be evaluated along with the speech recognition
in general user evaluation of Finnish and Swedish ASR in subtitling processes.

Language no VB with VB
Finnish 23.37 20.07
Swedish 27.23 29.34

Table 7: Diarisation Error Rates for Finnish and Swedish using the YLE media dataset with and without
Variational Bayes resegmentation (VB).

5 Multimodal approaches

In addition to solely visual-based and solely audio-based approaches, MeMAD’s Task T2.2 has
introduced a number of multimodal approaches that combine the two modalities together
in video content description that takes both information sources into account. That kind of
multimodal methods will be needed used in MeMAD’s Task T6.2 Prototype implementation.
Four such techniques, audio-enhanced video captioning, combined visual and auditory gender
classification, person re-identification and re-referencing and multimodal ASR, were found as
promising approaches and they are described in the following sections.

5.1 Audio-enhanced video captioning

MeMAD’s Deliverable D2.1 already included the AudioTagger software [65] which was used
to describe the aural contents of audio or video files with 527 audio tags derived from the
annotated AudioSet data by Google Research [66]. In Task T2.2 the audio tagging software
has been integrated more tightly in the PicSOM framework and can now be used widely for
audio feature extraction from videos and consequently also for content description including
caption generation with the DeepCaption library.

In TRECVID 2018 Video to Text Description (VTT) task, none of the best teams used au-
dio features. One of the main reasons for this was that the primary datasets for training the
captioning models were MS COCO and TGIF, neither of which contain sound. However, in
TRECVID 2019 VTT task, the winning team [44] had used also genuine video datasets, which
have audio, for their model training. Most importantly, they used the new VATEX video cap-
tioning dataset [45] that contains over 41,250 videos and 825,000 captions in both English
and Chinese.

In order to study the benefit offered by both the VATEX dataset and the AudioTagger features
over our previously used “silent” MS COCO and TGIF datasets and only visual features, we
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id datasets ResNet audio METEOR CIDEr CIDErD BLEU
c1 COCO+TGIF X 0.1996 0.2163 0.1043 0.0313
c2 COCO+TGIF+VATEX X 0.2108 0.2244 0.1295 0.0346
c3 VATEX X 0.2019 0.1770 0.1076 0.0301
c4 VATEX X X 0.2096 0.2226 0.1276 0.0355
c5 COCO+TGIF+VATEX X X 0.1978 0.1746 0.1025 0.0314

Table 8: Performance of captioning models in TRECVID 2019 VTT task when the used datasets and features
were varied and cross-entropy loss used as the training objective. ResNet means concatenated ResNet-101 and
ResNet-152 features.

performed a study whose results are comparable with those of the TRECVID 2019 VTT task.
We trained a set of video captioning models similar to those we used in our TRECVID 2019
VTT submissions, which are described in Section 3.3.2 and in the TRECVID VTT notebook
paper in Appendix B. In the models used in this study, we always used only the cross-entropy
loss based training objective and, therefore, the results are mainly comparable to the PicSOM
team’s VTT submission “s4” in Figure 4.

The results of the experiment are shown in Table 8. As can be seen, all models used the
concatenated ResNet-101 and Resnet-152 [39] visual features and the use of the AudioTagger
audio features varied. Comparing the two lines identified as “c3” and “c4” it is evident that the
use of the audio features clearly improved the quality of the generated captions with respect
to all four automatic performance measures if only VATEX data was used in training. However,
as can be seen by inspecting lines “c2” and “c5”, there clearly was no benefit from the audio
features of the VATEX videos if also the COCO and TGIF datasets were used.

Independent of the slightly contradictory findings above, the overall conclusion is that the
VATEX data is a useful addition to the set of available captioning datasets for model training.
We will definitely use it in our future works including those for MeMAD’s Task T2.3.

5.2 Combined visual and auditory gender classification

Prospective work has been carried out in INA in order to design multimodal systems using
speech and face gender classification modules described in Sections 3.2 and 4.1. The proposed
approach takes advantage of active speaker verification procedures [67], aiming at predicting
if the speech sound track of a video matches with the lip movements of one of the detected
faces in the visual stream. This active speaker verification step allows us to know which face
found in the video stream should be used and combined with the audio stream for multimodal
gender classification. First experiments with positive results were carried out based on open
source implementations, but were limited to cases where speakers’ lip movements are visible,
and aimed for maximal precision at low recall [67].

Several use-cases (fully automatic or involving human interaction) can be defined based on
this strategy:

Automatic gender classification error estimation: The accuracy of gender classification
in our large-scale studies is estimated on commonly used annotated corpora, which may
not reflect the diversity of audiovisual broadcasts. Consequently, the error rates shown
in our studies are dependent on specific corpora and may not reflect the performance
of the systems on new materials. This may be particularly problematic on speech data,
when a model trained on a specific language is used with a new language (French to
Finnish for instance). An active speaker detection system can be used to estimate the
classification error on each audiovisual document with a simple heuristic, such as the
amount of divergent visual and audio classifications.
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Semi-automatic database annotation: Active speaker detection can be used to process au-
diovisual streams to detect excerpts associated with different face and speech gender clas-
sifications. Such excerpts can be presented at a latter stage to annotators, allowing them
to perform gender annotation campaigns based on examples that challenge the face or
speech classification models.

Description of gender limit cases: Audiovisual excerpts associated with classification er-
rors can be used in qualitative and quantitative studies aimed at describing gender limit
cases based on acoustic features (prosody) or visual features (classification saliency maps).

Audiovisual gender classification: Research efforts may be devoted to combining acous-
tic and visual features and increasing the robustness of gender classification. Such sys-
tems will rely on unsupervised speaker segmentation procedures (diarisation) and active
speaker detection. These will be worked on during the last stage of the MeMAD project.

5.3 Person re-identification and re-referencing

As a joint effort of EURECOM, Lingsoft, AALTO, INA and Limecraft, research has been carried
out to merge the outputs of EURECOM’s face recognition system (described in Section 3.1),
Lingsoft’s speaker diarisation (described in Section 4.3), INA’s facial and aural gender recog-
nition (described in Sections 3.2 and 4.1) and AALTO’s video captioning (described in Sec-
tion 3.3.2). The face and voice information are first combined together for associating people’s
faces and voices into multimodal person representations. After video content descriptions have
been generated with the DeepCaption subsystem, the recognised persons’ identities can be used
to replace generic references to a man and a woman with their proper names in the captions.
This stage has been implemented as a text-based postprocessing step for the captions.

As can be understood, this cannot be a fully automatic procedure as some metadata infor-
mation about the names and genders of the people and the timecodes of their appearances
in the footage are needed to initialise the procedure. However, facial example images can be
collected and re-used for persons who repeatedly appear in news broadcasts or in different
episodes of the same program series, which will expand the applicability of the approach.

An example of the results of person re-identification and re-referencing is shown in Fig-
ure 6. The voice of the female journalist has been identified by Lingsoft’s speaker diarisation
as “SPEAKER 6”, but thanks to her visual appearances in the program, it has been possible to
associate her real name, her voice and face together in one multimodal representation. In the
following stages of the MeMAD project, we will collect a sample of reoccurring persons in INA’s
and YLE’s TV broadcasts and study the accuracy of person re-identification across programs
where their faces and/or voices occur.

Figure 6: An example of a re-identified and re-referred person in YLE’s Kuningaskuluttaja program. The
original caption: “A man is sitting in a chair and smiling.” The modified caption: “Marko Rajamäki is sitting
in a chair and smiling while Maarit Åström-Kupsanen speaks.”
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Figure 7: Training of the audiovisual embedding model. The model is encouraged to embed matching image-
caption pairs close to each other while pushing dissimilar pairs apart.

5.4 Multimodal ASR

In multimodal automatic speech recognition, other input modalities, like video and images, are
used alongside speech audio. AALTO has studied audiovisual embeddings introduced in [68]
and further developed in [69] as a potential method for connecting audio and video inputs.
The experiments in [69] show that the audiovisual embeddings form semantically meaningful
clusters. For example, sky in an image is associated with the spoken words blue and clouds.
The embeddings could thus provide a semantically meaningful features for a multimodal ASR
system.

The task of the models in [68, 69] is to transform an image and its corresponding spoken
caption into a shared embedding space. The models have two convolutional neural network
(CNN) branches, one for audio and one for images. The image branch is a standard image
classification network (VGG16) without the last classification layer. The audio branch is either
a simpler [68] or more complex [69] CNN that takes a spectrogram as input. Both branches
output a fixed-size vector that are measured for similarity in a loss function.

Figure 7 shows how the model is trained using triplet loss. With triplet loss the model
is rewarded for embedding an image and its corresponding caption close to each other. At
the same time, these embeddings are compared to the embeddings of one image and one
caption randomly sampled from the training data. The model is rewarded for pushing both
the random caption away from the original input image and the random image away from the
original input caption.

AALTO has replicated the model and verified the results of [69] using code12 and data13

published by the authors and made an enhanced version of the software available14. In the
original audiovisual retrieval task, the image corresponding to a given caption was among the
top 10 most similar images 55.4 % of the time. The caption corresponding to an image was
among the top 10 captions 46.4 % of the time. The comparable values in [69] are 60.4% and
52.8%. This is reasonably close to the performance reported in the original publication.

12https://github.com/dharwath/DAVEnet-pytorch
13https://groups.csail.mit.edu/sls/downloads/placesaudio/
14https://github.com/aalto-speech/avsr

MeMAD – Methods for Managing Audiovisual Data
Deliverable 2.2

21

https://github.com/dharwath/DAVEnet-pytorch
https://groups.csail.mit.edu/sls/downloads/placesaudio/
https://github.com/aalto-speech/avsr


6 Discussion

In this deliverable we have presented the work done and the current status of the multimodal
media content analysis tools used or developed in the MeMAD project. The software libraries
and tools have been made available to the project partners and a majority of them are also
publicly available in GitHub. Most of the development tasks have been joint efforts of two or
more MeMAD partners towards a common goal and the results could not have been obtained
without the co-operation. For the rest of the project, the tight collaboration between the
project partners will be even more essential.

In all cases when it has been possible, we have shown that the methods are on par with or
close to the current state of the art. In many cases we have also been able to demonstrate
the continuous improvement of our results while also the general state of the art has been
progressing simultaneously. In particular, the visual domain and audio domain parts of the
project have been supported with comparisons to the state of the art and we have shown good
performances on a broad set of tasks. For the face recognition task, our innovation is in the
application of state-of-the-art methods which combine MTCNN [14] and FaceNet [15] and
their productisation via an API. We have also evaluated the performance of the detection and
recognition of known faces on our own broadcast video data which are typically long videos
as shown in Table 1. The facial gender classification method has been compared to the models
with good results as reported in Table 3. The performance of our video captioning library has
been continuously improving and is keeping up with the development of the state of the art as
depicted in Figure 4. Speech recognition has been evaluated on a new and highly challenging
YLE dataset gathered as a part of the MeMAD project. Along the evaluations, we have observed
that our proposed models outperform the baseline models as seen in Table 5 and our Lingsoft
ASR software outperforms the Google ASR in Finnish and Swedish as shown in Table 4.

More important than rigorous state-of-the-art comparisons, however, has been the appli-
cation of the methods to the MeMAD project’s own broadcast video materials provided by
INA and YLE, and to SURREY’s study corpus of movie clips. The importance of applying the
methods to the “real” datasets instead of benchmarking data stems from the fact that many
of the best-performing methods have been devéloped and trained to work best for the par-
ticular benchmark’s testing data and their performance on real-world data can realistically
be expected to be worse. This behaviour results from the inevitable differences between the
available large-scale training datasets and the MeMAD-specific testing datasets, and has been
observed also in the experiments reported in this deliverable. To broadcasting companies such
as YLE, getting to know the practical performance of the methods on their own broadcast
programs is also valuable to help them in their future research and investments.

The real applicability and usefulness of the multimodal media content analysis tools studied
in MeMAD’s Work Package WP2 will be evaluated by the end of the project in Work Package
WP6. Even if the automatic content analysis methods developed will not fully fulfill the expec-
tations set for them in the beginning of the project, we already have and will still obtain very
useful insight into the applicability of each of the analysis components alone and in combina-
tion with others. Some of these applicability issues can still be resolved during the MeMAD
project, whereas others will remain to be solved in the future by the multimedia research
community as a whole.

MeMAD – Methods for Managing Audiovisual Data
Deliverable 2.2

22



7 Summary of the MeMAD multimodal analysis software

name st provider license code description
PicSOM U AALTO Apache 2 C++ multimedia content analysis

framework
DeepCaption U AALTO Apache 2 Python3 image and video captioning
visual-storytelling N AALTO Apache 2 Python3 visual storytelling
AALTO ASR U AALTO MIT speech recognition scripts using

Kaldi
Speaker-aware training N AALTO MIT Python3 speaker-aware training of end-to-

end ASR using Espnet
SphereDiar N AALTO MIT Python3 tools for overlapping speaker de-

tection, speaker verification and
speaker diarisation

avsr N AALTO MIT Python3 multimodal ASR
AudioTagger U AALTO Apache 2 Python3 audio event classification
OpenNMT-py O AALTO MIT Python3 multi-modal image caption

translation for WP4
statistical-tools O AALTO MIT Python3 tools for creating dataset statis-

tics for WP5
Face-Celebrity-Recognition U EURECOM Apache 2 Python3 tools for detecting, aligning and

recognising faces in video
inaSpeechSegmenter U INA MIT Python3 speech, music and noise segmen-

tation; speaker gender detection
inaFaceGender N INA proprietary Python3 face detection, tracking and gen-

der classification
Flow Shot Cut Detector O Limecraft proprietary C subprogram of broadcast video

production system
Lingsoft Speech Service U Lingsoft proprietary Python3,

C++,
JavaScript

automatic speech recognition
service via an API

Table 9: Software components of MeMAD related to multimodal content analysis. Column “st” shows the
status symbols standing for “O” = old version of MeMAD D2.1, “U” = updated version from D2.1 to D2.2, and
“N” = new component in D2.2.

Table 9 contains a summary of the software components used in the MeMAD project for multi-
modal content analysis and available to the project members. Software components that have
proprietary licenses are available for the MeMAD partners as software or as a service. Those
that have been identified to have a liberal licensing scheme, such as MIT or Apache 2, are
publicly available as source code in MeMAD’s GitHub page located at:

https://github.com/MeMAD-project

The liberally licensed software components discussed in this report have been specifically
collected for ease of installation in a repository named mmca:

https://github.com/MeMAD-project/mmca

Some of the modules in mmca are physically located outside of the MeMAD GitHub project,
but the Git submodule mechanism facilitates their seamless availability from their true loca-
tions. All of the software packages can be obtained with a single operation:

git clone https://github.com/MeMAD-project/mmca.git --recursive
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Each of the subdirectories created inside the mmca directory contains its own further instal-
lation and use instructions. Specifically, each package will have up-to-date instructions for
installation and usage in a file called README.md in the corresponding directory. The licensing
information of each submodule is available in a file named LICENSE.
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[1] Héctor Laria Mantecón, Jorma Laaksonen, Danny Francis, and Benoit Huet. PicSOM
and EURECOM experiments in TRECVID 2019. In Proceedings of the TRECVID 2019
Workshop, Gaithersburg, MD, USA, November 2019.

[2] Danny Francis, Phuong Anh Nguyen, Benoit Huet, and Chong-Wah Ngo. EURECOM at
TRECVid AVS 2019. In Proceedings of the TRECVID 2019 Workshop, Gaithersburg, MD,
USA, November 2019.
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[57] Christoph Lüscher, Eugen Beck, Kazuki Irie, Markus Kitza, Wilfried Michel, Albert Zeyer,
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A Dissemination activities

• Conference presentation 4.9.2019: CAIP 2019: The 18th International Conference on
Computer Analysis of Images and Patterns, Salerno, Italy. Rao Muhammad Anwer presented
Multi-stream Convolutional Networks for Indoor Scene Recognition.

• Workshop organisation 21.10.2019: AI4TV 2019: 1st International Workshop on AI for
Smart TV Content Production, Access and Delivery, a workshop in ACM International Con-
ference on Multimedia, Nice, France. Raphaël Troncy and Jorma Laaksonen chaired the
workshop.

• Workshop presentation 21.10.2019: AI4TV 2019: 1st International Workshop on AI for
Smart TV Content Production, Access and Delivery, Nice, France. Danny Francis presented
L-STAP: Learned Spatio-Temporal Adaptive Pooling for Video Captioning.

• Keynote 22.10.2019: ACMMM19: ACM Multimedia 2019 Conference, Nice, France. Jean
Carrive presented the introducing keynote Using Artificial Intelligence to Preserve Audiovi-
sual Archives: New Horizons, More Questions.

• Workshop presentation 25.10.2019: MULEA ’19: 1st International Workshop on Multi-
modal Understanding and Learning for Embodied Applications, Nice, France. Zhu-Jui Wang
presented Geometry-aware Relational Exemplar Attention for Dense Captioning.

• Conference presentation 31.10.2019: ICCV 2019: International Conference on Computer
Vision, Seoul, Korea. Rao Anwer presented Deep Contextual Attention for Human-Object
Interaction Detection.

• Workshop presentation 12–13.11.2019: TRECVID 2019: TREC Video Retrieval Evaluation,
Gaithersburg, USA. Jorma Laaksonen presented an invited talk titled Image Data, Video
Data and Both in VTT Model Training.

• Workshop presentation 28.11.2019: AIDI: AI in distribution and production, Manchester,
UK. David Doukhan presented an invited talk titled Describing gender representation in
French TV and radio with AI.

• Conference presentation 22-25.10.2019: FIAT/IFTA World Conference, Dubrovnik, Croa-
tia. David Doukhan presented an invited talk titled Artificial intelligence to measure gender
imbalances over 700,000 hours of media.

• Workshop presentation 13.12.2019: Corpus Workshop at BnF: Jean Carrive presented
New Analysis Methods for Audiovisual Media: ANTRACT and MeMAD projects, Collect, Pre-
serve, Explore Massive Audiovisual Corpora Workshop, National Library of France (BnF)
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B Appendices

B.1 Abstracts of Master’s and PhD Theses

The following pages contain abstracts of the Master’s and PhD Theses whose full contents can
be accessed through the links below:

• Arturs Polis: Paragraph-length image captioning using hierarchical recurrent neural net-
works. Master’s Thesis, University of Helsinki, 2019. [32]

• Héctor Laria Mantecón: Deep Reinforcement Sequence Learning for Visual Captioning. Mas-
ter’s Thesis, Aalto University, 2019. [43]

• Aditya Surikuchi: Visual Storytelling: Captioning of Image Sequences. Master’s Thesis, Aalto
University, 2019. [46]

• Tuomas Kaseva: SphereDiar – an efficient speaker diarization system for meeting data. Mas-
ter’s Thesis, Aalto University, 2019. [63]

• Danny Francis: Semantic Representations of Images and Videos. PhD Thesis, Sorbonne
University-EURECOM, 2019. [50]
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Faculty of Science Master’s Programme in Data Science

Arturs Polis

Paragraph-length image captioning using hierarchical recurrent neural networks

Master’s thesis March 29, 2019 83

neural networks, image captioning, paragraph captioning, hierarchical RNN

Recently, a neural network based approach to automatic generation of image descriptions has be-
come popular. Originally introduced as neural image captioning, it refers to a family of models
where several neural network components are connected end-to-end to infer the most likely caption
given an input image. Neural image captioning models usually comprise a Convolutional Neural
Network (CNN) based image encoder and a Recurrent Neural Network (RNN) language model for
generating image captions based on the output of the CNN.

Generating long image captions – commonly referred to as paragraph captions – is more challenging
than producing shorter, sentence-length captions. When generating paragraph captions, the model
has more degrees of freedom, due to a larger total number of combinations of possible sentences
that can be produced. In this thesis, we describe a combination of two approaches to improve
paragraph captioning: using a hierarchical RNN model that adds a top-level RNN to keep track
of the sentence context, and using richer visual features obtained from dense captioning networks.
In addition to the standard MS-COCO Captions dataset used for image captioning, we also utilize
the Stanford-Paragraph dataset specifically designed for paragraph captioning.

This thesis describes experiments performed on three variants of RNNs for generating paragraph
captions. The flat model uses a non-hierarchical RNN, the hierarchical model implements a two-
level, hierarchical RNN, and the hierarchical-coherent model improves the hierarchical model by
optimizing the coherence between sentences.

In the experiments, the flat model outperforms the published non-hierarchical baseline and reaches
similar results to our hierarchical model. The hierarchical model performs similarly to the corre-
sponding published model, thus validating it. The hierarchical-coherent model gives us inconclusive
results – it outperforms our hierarchical model but does not reach the same scores as the corre-
sponding published model.

With our flat model implementation, we have shown that with minor improvements to a simple
image captioning model, one can obtain much higher scores on standard metrics than previously
reported. However, it is yet unclear whether a hierarchical RNN is required to model the paragraph
captions, or whether a single RNN layer on its own can be powerful enough. Our initial human
evaluation indicates that the captions produced by a hierarchical RNN may in fact be more fluent,
however the standard automatic evaluation metrics do not capture this.
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Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Héctor Laria Mantecón

Title:
Deep Reinforcement Sequence Learning for Visual Captioning

Date: August 8, 2019 Pages: 77

Major: Machine Learning, Data Science and
Artificial Intelligence

Code: SCI3044

Supervisor: Docent Jorma Laaksonen

Advisor: Docent Jorma Laaksonen

Methods to describe an image or video with natural language, namely image and
video captioning, have recently converged into an encoder-decoder architecture.
The encoder here is a deep convolutional neural network (CNN) that learns a
fixed-length representation of the input image, and the decoder is a recurrent
neural network (RNN), initialised with this representation, that generates a de-
scription of the scene in natural language.

Traditional training mechanisms for this architecture usually optimise models us-
ing cross-entropy loss, which experiences two major problems. First, it inherently
presents exposure bias (the model is only exposed to real descriptions, not to its
own words), causing an incremental error in test time. Second, the ultimate ob-
jective is not directly optimised because the scoring metrics cannot be used in
the procedure, as they are non-differentiable. New applications of reinforcement
learning algorithms, such as self-critical training, overcome the exposure bias,
while directly optimising non-differentiable sequence-based test metrics.

This thesis reviews and analyses the performance of these different optimisa-
tion algorithms. Experiments on self-critic loss denote the importance of robust
metrics against gaming to be used as the reward for the model, otherwise the
qualitative performance is completely undermined. Sorting that out, the results
do not reflect a huge quality improvement, but rather the expressiveness worsens
and the vocabulary moves closer to what the reference uses.

Subsequent experiments with a greatly improved encoder result in a marginal
enhancing of the overall results, suggesting that the policy obtained is shown to
be heavily constrained by the decoder language model. The thesis concludes that
further analysis with higher capacity language models needs to be performed.

Keywords: deep learning, machine learning, neural networks, reinforce-
ment learning, policy gradient, reinforce, self critic, caption-
ing, description generation, computer vision

Language: English
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Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Aditya Surikuchi

Title: Visual Storytelling: Captioning of Image Sequences

Date: November 25, 2019 Pages: 78

Major: Machine Learning, Data Science and
Artificial Intelligence

Code: SCI3044

Supervisor: Jorma Laaksonen D.Sc. (Tech.), Aalto University

Advisor: Jorma Laaksonen D.Sc. (Tech.), Aalto University

In the space of automated captioning, the task of visual storytelling is one dimen-
sion. Given sequences of images as inputs, visual storytelling (VIST) is about
automatically generating textual narratives as outputs. Automatically producing
stories for an order of pictures or video frames have several potential applications
in diverse domains ranging from multimedia consumption to autonomous systems.
The task has evolved over recent years and is moving into adolescence. The avail-
ability of a dedicated VIST dataset for the task has mainstreamed research for
visual storytelling and related sub-tasks.

This thesis work systematically reports the developments of standard captioning
as a parent task with accompanying facets such as dense captioning, and gradually
delves into the domain of visual storytelling. Existing models proposed for VIST
are described by examining respective characteristics and scope. All the methods
for VIST adapt from the typical encoder-decoder style design, owing to its success
in addressing the standard image captioning task. Several subtle differences in the
underlying intentions of these methods for approaching the VIST are subsequently
summarized.

Additionally, alternate perspectives around the existing approaches are explored
by re-modeling and modifying their learning mechanisms. Experiments with dif-
ferent objective functions are reported with subjective comparisons and relevant
results. Eventually, the sub-field of character relationships within storytelling
is studied and a novel idea called character-centric storytelling is proposed to
account for prospective characters in the extent of data modalities.

Keywords: captioning, visual storytelling, sequence modeling, natural
language processing, computer vision, semantic relationships,
deep reinforcement learning

Language: English
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Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Tuomas Kaseva
Title SphereDiar - an efficient speaker diarization system for meeting data
Degree programme Computer, Communication and Information Sciences
Major Signal, Speech and Language Processing Code of major ELEC3031
Supervisor Prof. Mikko Kurimo
Advisor M.Sc. Aku Rouhe
Date 27.5.2019 Number of pages 2 Language English
Abstract
The objective of speaker diarization is to determine who spoke and when in a given
audio stream. This information is useful in multiple different speech related tasks such
as speech recognition, automatic creation of rich transcriptions and text-to-speech
synthesis. Moreover, speaker diarization can also play a central role in the creation
and organization of speech-related datasets.

Speaker diarization is made difficult by the immense variability in speakers
and recording conditions, and the unpredictable and overlapping speaker turns
of spontaneous discussion. Especially diarization of meeting data has been very
challenging. Even the most advanced speaker diarization systems still struggle with
this type of data.

In this thesis, a novel speaker diarization system, named SphereDiar and designed
for the diarization of meeting data, is proposed. This system combines three novel
subsystems: the SphereSpeaker neural network for speaker modeling, a segmentation
method named Homogeneity Based Segmentation and a clustering algorithm Top
Two Silhouettes. The system harnesses up-to-date deep learning approaches for
speaker diarization and addresses the problem of overlapping speech in this task.

Experiments are performed on a dataset consisting of over 200 meetings. The
experiments have two main outcomes. Firstly, the use of Homogeneity Based
Segmentation is not vital for the system. Thus, the configuration of SphereDiar
can be simplified by omitting segmentation. Furthermore, SphereDiar is shown to
surpass the performance of two different state-of-the-art speaker diarization systems.

Keywords speaker diarization, speaker modeling, segmentation, clustering, meeting
data
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Doctoral Thesis Abstract

Author: Danny Francis
Title: Semantic Representations of Images and Videos
Date: December 12, 2019 Pages: 151
Department: Data Science
Supervisors: Bernard Merialdo and Benoit Huet
Describing images or videos is a task that we all have been able to tackle since our earliest
childhood. However, having a machine automatically describe visual objects or match them
with texts is a tough endeavor, as it requires to extract complex semantic information from
images or videos. Recent research in Deep Learning has sent the quality of results in multimedia
tasks rocketing: thanks to the creation of big datasets of annotated images and videos, Deep
Neural Networks (DNN) have outperformed other models in most cases. In this thesis, we aim
at developing novel DNN models for automatically deriving semantic representations of images
and videos. In particular we focus on two main tasks : vision-text matching and image/video
automatic captioning.
Addressing the matching task can be done by comparing visual objects and texts in a visual
space, a textual space or a multimodal space. In this thesis, we experiment with these three
possible methods. Moreover, based on recent works on capsule networks, we define two novel
models to address the vision-text matching problem: Recurrent Capsule Networks and Gated
Recurrent Capsules. We find that replacing Recurrent Neural Networks usually used for natural
language processing such as Long Short-Term Memories or Gated Recurrent Units by our novel
models improve results in matching tasks. On top of that, we show that intrinsic characteristics
of our models should make them useful for other tasks.
In image and video captioning, we have to tackle a challenging task where a visual object has
to be analyzed, and translated into a textual description in natural language. For that purpose,
we propose two novel curriculum learning methods. Experiments on captioning datasets show
that our methods lead to better results and faster convergence than usual methods. Moreover
regarding video captioning, analyzing videos requires not only to parse still images, but also to
draw correspondences through time. We propose a novel Learned Spatio-Temporal Adaptive
Pooling (L-STAP) method for video captioning that combines spatial and temporal analysis. We
show that our L-STAP method outperforms state-of-the-art methods on the video captioning
task in terms of several evaluation metrics.
Extensive experiments are also conducted to discuss the interest of the different models and
methods we introduce throughout this thesis, and in particular how results can be improved by
jointly addressing the matching task and the captioning task.

Keywords:
Deep Learning, Multimedia, Computer Vision, Natural Language Processing,
Image, Video

Language: English
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B.2 AALTO and EURECOM’s paper in TRECVID 2019 VTT [1]

This paper describes the runs that the AALTO and EURECOM teams submitted to TRECVID
2019 VTT and summarises their results.
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PicSOM and EURECOM Experiments in
TRECVID 2019

Pre-workshop draft – Revision: 0.9

Héctor Laria Mantecón+, Jorma Laaksonen+, Danny Francis∗, Benoit Huet∗

+Department of Computer Science
Aalto University School of Science

P.O.Box 15400, FI-00076 Aalto, Finland
firstname.lastname@aalto.fi

∗Department of Data Science
EURECOM, Campus SophiaTech

450 route des Chappes
06410 Biot, France

firstname.lastname@eurecom.fr

Abstract

This year, the PicSOM and EURECOM teams participated only in the Video to Text Description (VTT), Description Generation
subtask. Both groups submitted one or two runs labeled as a ”MeMAD” submission, stemming from a joint EU H2020 research
project with that name. In total, the PicSOM team submitted four runs and EURECOM one run. The goal of the PicSOM
submissions was to study the effect of using either image or video features or both. The goal of the EURECOM submission was
to experiment with the use of Curriculum Learning in video captioning. The submitted five runs are as follows:
• PICSOM.1-MEMAD.PRIMARY: uses ResNet and I3D features for initialising the LSTM generator, and is trained on MS

COCO + TGIF using self-critical loss,
• PICSOM.2-MEMAD: uses I3D features as initialisation, and is trained on TGIF using self-critical loss,
• PICSOM.3: uses ResNet features as initialisation, and is trained on MS COCO + TGIF using self-critical loss,
• PICSOM.4: is the same as PICSOM.1-MEMAD.PRIMARY except that the loss function used is cross-entropy,
• EURECOM.MEMAD.PRIMARY: uses I3D features to initialize a GRU generator, and is trained on TGIF + MSR-VTT +

MSVD with cross-entropy and curriculum learning.
The runs aim at comparing the use of cross-entropy and self-critical training loss functions and to showing whether one can
successfully use both still image and video features even when the COCO dataset does not allow the extractions of I3D video
features. Based on the results of the runs, it seems that using both video and still image features, one can obtain better captioning
results than with either one of the single modalities alone. The Curriculum Learning process proposed does not seem to be
beneficial.

I. INTRODUCTION

In this notebook paper, we describe the PicSOM and EU-
RECOM teams’ experiments for the TRECVID 2019 evalua-
tion [1]. We participated only in the Video to Text Description
(VTT) subtask Description Generation. Our approaches are
variations of the “Show and tell” model [2], augmented with
a richer set of contextual features [3], self-critical training [4]
and Curriculum Learning [5]. Both teams’ systems have
been used to produce the runs presented in this paper. The
captioning models are described in more detail in Section II
and their used training loss functions in Section III. Then, we
describe the features in Section IV and the datasets used for
training in Section V. Our experiments, submitted runs and
results are discussed in Section VI and conclusions are drawn
in Section VII.

II. NEURAL CAPTIONING MODELS

In our experiments we have used two different Python-based
software projects for caption generation. The PicSOM team’s

DeepCaption, uses the PyTorch library, whereas EURECOM’s
CLCaption approach is based on using the TensorFlow library.

A. DeepCaption

The PicSOM team’s LSTM [6] model has been imple-
mented in PyTorch and is available as open source.1 The
features are translated to the hidden size of the LSTM by
using a fully connected layer. We apply dropout and batch
normalization [7] at this layer. As the loss function, we
similarly use cross entropy, in addition to Reinforcement
Learning with self-critical loss function [4] in order to fine-
tune a well-performing model. The fine-tuning is implemented
either by switching to the self-critical loss in training time or
by specifying a pre-trained model to load and fine-tune.

B. CLCaption

For EURECOM’s first participation in the TRECVID VTT
captioning task, we submitted a run based on a model trained

1https://github.com/aalto-cbir/DeepCaption
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by Curriculum Learning [8]. We implemented our model using
the TensorFlow framework for Python [9].

The idea behind Curriculum Learning is to present data
during training in an ascending order of difficulty: first epochs
are based on easy samples, and after each epoch, more
difficult samples are added to training data. We computed a
difficulty score for a given sample composed of a video and
a corresponding caption as follows: the caption is translated
into a list of indices (the bigger the indices the less frequent
the corresponding word), the score of the sample is then
the maximum index of its caption. Once samples have been
scored, we trained the model starting with an easy subset of
the training set, and adding after each epoch more complex
samples.

Video features have been extracted with an I3D neural
network [10], input to a fully connected layer and then
processed by a GRU [11] to generate captions. Cross-entropy
loss has been used for training the model.

III. TRAINING LOSS FUNCTIONS

In order to train the architecture so that its output distribu-
tion approximates the target distribution at each decoding step
t, several optimisation objectives are used. Recent progress on
sequence training enables new optimisation paradigms, which
are applied and compared in this work.

A. Cross-entropy

Traditionally, the teacher forcing algorithm [5] is the most
common method to maximise the log-likelihood of a model
output X to match the ground truth y = {y1, y2, · · · , yT }. It
minimises the cross-entropy objective

LCE = −
T∑

t=1

log pθ (yt | yt−1,ht−1, X) , (1)

where ht−1 is the hidden state of the RNN from the previous
step and pθ the probability of an output parametrized by θ.
In the inference time, the output can be produced simply by
greedy sampling of the sequence being generated.

B. Self-critical

Lately, Reinforcement Learning ideas have been used to op-
timise a captioning system based on recurrent neural network
language models. Such a system can be seen as an agent taking
actions according to a policy πθ and outputting a word ŷt as
an action.

One proposed approach is the self-critical algorithm [4],
where the output at inference time of the model ŷgi,t is used,
normally applying greedy search. The sequences are scored
using a reward function r. Thanks to the properties of this
optimisation, NLP metrics can be used as reward to affect
the actual loss. In our case, CIDErD [12] is used. The final
objective reads

Lθ = 1
N

∑N
i=1

∑
t log πθ (ŷi,t | ŷi,t−1, si,t,hi,t−1)

·
(
r(ŷi,1, · · · , ŷi,T )− r(ŷgi,1, · · · , ŷgi,T )

) . (2)

IV. FEATURES

Table I summarizes the features used in our experiments
and their dimensionalities.

TABLE I
SUMMARY OF THE FEATURES USED IN OUR EXPERIMENTS.

abbr. feature dim. modality
rn CNN ResNet 4096 image
fr Faster R-CNN 80 image

i3d I3D 2048 video

A. CNN

We are using pre-trained CNN features from ResNet 101
and 152. The 2048-dimensional features from the pool5 layer
average to five crops from the original and horizontally flipped
images. These features have then been concatenated together
and are referred to as “rn” in Table I and later in this paper.
When applied to a video object, we have used the middlemost
frame of the video.

B. FasterRCNN

The existence of certain objects in the visual scene has
an effect on sentence formation and influences the adjectives
used in human sentences. To extract this information, we
use an object detector, specifically the Faster Region-based
Convolutional Neural Network (R-CNN) [13]. This network
predicts the object locations as bounding boxes and object
detection scores of the 80 object categories of Microsoft
Common Objects in Common Context (MS-COCO) database.2

In our current approach we, however, ignore the location
information and encode the object detection scores on the
image level. We obtain thus an 80-dimensional feature vector
using the detection score for each category, and refer to it
as “fr”. When applied to a video object, we have used the
middlemost frame of the video.

C. I3D

To encode video features, the PicSOM team adopted Inflated
3D Convolutional Network (I3D) [10]. It builds upon already
competent image recognition models (2D) and inflates the
filters and kernels to 3D, thus creating an additional temporal
dimension. Concretely, the base network used is ImageNet-
pretrained Inception-V1 [14] using two streams [15]. The
videos were first resampled to 25 frames per second as in the
original I3D paper and 128 frames were taken from the center.
For DeepCaption, the extractor is applied convolutionally over
the whole video and the output is average-pooled in order to
produce a 2048-dimensional feature vector.

Regarding CLCaption, features have been extracted before
the softmax layer, thus obtaining a 600-dimensional features
vector. These features have then been input to the CLCaption
model.

2http://cocodataset.org/
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V. TRAINING DATA

Table II gives a summary of the databases and the features
we have extracted for them. In Tables II and III, we have
shortened the dataset names with one letter abbreviations.

TABLE II
SUMMARY OF THE TRAINING DATASETS USED IN OUR EXPERIMENTS.

dataset items captions features
C COCO 82,783 img 414,113 rn fr
M MSR-VTT 6,513 vid 130,260 rn i3d
T TGIF 125,713 vid 125,713 rn fr i3d
V MSVD 1,969 vid 80,800 rn i3d

A. COCO

The Microsoft Common Objects in COntext (MS COCO)
dataset [16] has 2,500,000 labeled instances in 328,000 im-
ages, consisting on 80 object categories. COCO is focused on
non-iconic views (or non-canonical perspectives) of objects,
contextual reasoning between objects, and precise 2D local-
ization of objects.

B. MSR-VTT

The MSR-Video to Text (MSR-VTT) dataset [17] provides
10,000 web video clips with 41.2 hours and 200,000 clip-
sentence pairs in total, covering a comprehensive list of 20
categories and a wide variety of video content. Each clip was
annotated with about 20 natural sentences. Additionally, the
audio channel is provided too.

C. TGIF

The Tumblr GIF (TGIF) dataset [18] contains 100,000
animated GIFs and 120,000 natural language sentences. This
dataset aims to provide motion information involved between
image sequences (or frames).

D. MSVD

The Microsoft Research Video Description Corpus
(MSVD) [19] consists of 85,000 English video description
sentences and more than 1,000 for a dozen more languages. It
contains a set of 2,089 videos, showing a single, unambiguous
action or event.

VI. EXPERIMENTS AND RESULTS

During the development stage, the PicSOM team ran a
number of experiments to select the best combinations of
features and training datasets. We evaluated our results using
the previously released ground truth of TRECVID VTT 2018
test set. The four runs submitted are identified as “p-19-s1”
to “p-19-s4” in Table III. The runs “p-18-s2” and “p-18-a3”
we created using our best model in the last year’s submissions
and the best model we experimented with after the last year’s
workshop, respectively.

Runs identified as “p-19-s1” and “p-19-s4” use I3D video
features extracted from the TGIF dataset. We used also the
COCO dataset for training the models for those runs, but
because we could not extract I3D video features from the still

images of that dataset, we used the average value of the I3D
feature vectors of the TGIF dataset for each COCO image.

Based on evaluation on the TRECVID VTT 2018 test set,
we ended up using a 2-layer LSTM for DeepCaption with
an embedding vector size of 512, and 1024 for the hidden
state dimensionality in all PicSOM team’s runs. Both in the
input translation layer and in the LSTM we applied a dropout
of 0.5. We used Adam optimiser [20] for the self-critical
stage with a learning rate of 5 × 10−5 and no weight decay.
Additionally, gradient clipping is performed when a range
[−0.1, 0.1] is exceeded. The models were pretrained using
centered RMSprop [21] with a learning rate of 0.001 and
weight decay (L2 penalty) of 10−6.

EURECOM’s CLCaption is based on a GRU with 1024-
dimensional hidden states. The size of the input I3D vectors
is 600. The fully-connected layer output is of dimension 1024.
No dropout nor batch normalization were used. The training
algorithm we used was RMSProp with a learning rate of
0.0001 and mini-batches of size 64. The CLCaption run is
identified as “e-19-e1” in Table III where all experiments are
briefly summarized and their results presented.

The four “setup” columns in Table III specify the sub-
mission type (I=image, V=video, B=both), the loss func-
tion (ce=cross-entropy, sc=self-critical), the features, and the
datasets used in the RNN model training.

The features are concatenations of the following:

rn = CNN ResNet, see IV-A
fr = Faster R-CNN, see IV-B

i3d = I3D, see IV-C

The used datasets are combinations of the following:

C = COCO, see V-A
M = MSR-VTT, see V-B
T = TGIF, see V-C
V = MSVD, see V-D

Our results compared to those of the other submitted runs
are visualized with bar charts for each automatic performance
measure in Figures 1–5.
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Fig. 1. METEOR results of our teams and others.
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TABLE III
RESULTS OF OUR SUBMISSIONS (P-19-S1,. . . ,4, E-19-E1) AND SOME NOTEWORTHY EARLIER MODELS (P-18-S2, P-18-A3). THE P-* RUNS ARE BY THE

PICSOM TEAM AND THE E-* RUN BY THE EURECOM TEAM.

setup 2018 2019
id t loss feat data METEOR CIDEr CIDErD BLEU METEOR CIDEr CIDErD BLEU STS

p-18-s2 I ce rn+fr C+M 0.1541 0.1657 0.0476 0.0091 0.1773 0.1858 0.0722 0.0207 –
p-18-a3 I ce rn C+T 0.1776 0.1948 0.0700 0.0197 0.1993 0.2174 0.1004 0.0288 –
p-19-s1 B sc rn+i3d C+T 0.2055 0.3025 0.1157 0.0294 0.2285 0.3277 0.1615 0.0385 0.4168
p-19-s2 V sc i3d T 0.1958 0.2718 0.0949 0.0348 0.2139 0.2773 0.1245 0.0379 0.4169
p-19-s3 I sc rn C+T 0.2007 0.2777 0.1074 0.0301 0.2254 0.3130 0.1569 0.0345 0.4282
p-19-s4 B ce rn+i3d C+T 0.1850 0.2190 0.0822 0.0213 0.2049 0.2348 0.1147 0.0319 0.4057
e-19-e1 V ce i3d M+T+V – – – – 0.1743 0.2340 0.0710 0.0068 0.4214
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Fig. 2. CIDEr results of our teams and others.
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Fig. 3. CIDErD results of our teams and others.

VII. CONCLUSIONS

There were two main research question in the PicSOM
team’s set of four submissions. First, we wanted to compare
the implementations of cross-entropy and self-critical training
loss functions in our DeepCaption code. The results with self-
critical training were better in all measures, but this could
of course be expected based on our and other teams’ earlier
experiments. Based on our observations, however, the use
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Fig. 4. BLEU results of our teams and others.
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of this loss alone does not imply a straightforward jump in
caption quality as much as the score increment suggests.

Second, we aimed to know whether we could successfully
use both still image and video features even when the COCO
dataset does not allow the extractions of I3D video features.
The trick we applied was to use the average of the I3D video
features extracted from the TGIF dataset for all images in the
COCO dataset. For the COCO images the video features were
thus non-informative, but still allowed us to use two datasets
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and two different feature extraction schemes together. The
results of this approach were encouraging as they were better
than those with either dataset or either feature used alone.

Additionally, we could now compared the current per-
formance of the PicSOM team’s DeepCaption model to its
performance in the last year’s evaluation. We have clearly
made substantial progress compared to both the last year’s
submission and to the post-workshop experiments reported in
our previous notebook paper. However, compared to the level
of performance reached by some of the other research groups,
we are still clearly behind as all the groups seem to have
improved from the previous year.

The results obtained by CLCaption are far from standing
comparison with the best runs of TRECVID VTT 2019.
However, multiple ways to improve them can be explored,
such as different scoring methods or finer curriculum learning
algorithms. We will explore these directions to boost the
results of CLCaption.
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Kraaij, and Georges Quénot. Trecvid 2019: An evaluation campaign to
benchmark video activity detection, video captioning and matching, and
video search & retrieval. In Proceedings of TRECVID 2019. NIST, USA,
2019.

[2] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan.
Show and tell: A neural image caption generator. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

[3] Rakshith Shetty, Hamed R.-Tavakoli, and Jorma Laaksonen. Image
and video captioning with augmented neural architectures. IEEE
MultiMedia, 25(2):34–46, April 2018.

[4] Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and
Vaibhava Goel. Self-critical sequence training for image captioning.
CoRR, abs/1612.00563, 2016.

[5] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Sched-
uled sampling for sequence prediction with recurrent neural networks.
CoRR, abs/1506.03099, 2015.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional Conference on Machine Learning, pages 448–456, 2015.
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B.3 EURECOM’s paper in TRECVID 2019 AVS workshop [2]

This paper describes the runs that the EURECOM team submitted to TRECVID 2019 AVS and
summarises the results.
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Abstract

This notebook reports the model and results of the EU-
RECOM runs at TRECVID AVS 2019.

1. Introduction
In our runs of TRECVid AVS 2019, we propose using

a fusion of two multimodal modules trained on different
datasets. Our runs are based on the work we introduced
in [4].

The remaining sections are organized as follows. Section
2 presents related works in AVS. Section 4 introduces the
cross-modal learning employed for training two different
modules, Section 4 describes the followed fusion method,
and Section 5 reports our results at TRECVid AVS 2019
[2].

2. Related Works
From AVS 2018, the general approaches from the par-

ticipants can be summarized as follows: linguistic analy-
sis for query understanding combining different techniques
for concept selection and fusion; or learning joint embed-
ding space of textual queries and images; or the integra-
tion of two mentioned approaches. From the results of ten
participants, we conclude that the approach of learning the
embedding space is the key of success for AVS task. Fol-
lowing up this direction, we propose to learn two embed-
ding spaces including objects counting and semantic con-
cepts separately, and a fusion method to incorporate these
models.

3. Cross-Modal Learning
In this section we will describe the multimodal models

we employed. More precisely we will first define their ar-
chitecture and then how we trained them.

3.1. Feature Representation

Let Q be a textual query and V an image or a video. We
want to build a model so that Q and V can be compared.

More precisely, we want to be able to assign a score to any
(Q, V ) to describe the relevance of V with respect to Q. For
that purpose, we use a similar model to [3].

For processing textual queries, we represent any query
Q of length L as a sequence (w1, ..., wL) of one-hot vectors
of dimension N , where N is the size of our vocabulary.
These one-hot vectors are then embedded in a vector space
of dimension D. More formally, we obtain a sequence of
word embeddings (x1, ..., xL) where xk = wkWe for each
k in {1, ..., L}. The weights of the embedding matrix We 2
RD⇥N are trainable.

The obtained sequence of word embeddings is then
processed by a GRU, whose last hidden state hL =
GRU(hL�1, xL) is kept and input to a Fully-Connected
layer to get a sentence embedding vs.

Regarding visual objects, the generic process we employ
is to extract a vector representation '(V ) of a visual object
V where ' corresponds to any relevant concepts or features
extractor. Then, we input '(V ) to a Fully-Connected layer
to obtain a visual embedding vv .

Our goal is to train these models to be able to compare
vs and vv . We will explain how these models are trained in
Section 3.2.

3.2. Model Training

The objective is to learn a mapping such that the rele-
vancy of a pair of a query and a video (Q, V ) can be evalu-
ated. As explained in Section 3.1, our model derives a query
representation vs from Q and a video representation vv from
V . Triplet loss is used as the loss function for model train-
ing. Mathematically, if we consider a query representation
vs, a positive video representation vv (corresponding to vs)
and a negative video representation v̄v (that does not corre-
spond to vs), the triplet loss L for (vs, vv, v̄v) to minimize
is defined as follows:

L(vs, vv, v̄v) = max(0,↵�cos(vs, vv)+cos(vs, v̄v)) (1)

where ↵ is a margin hyperparameter that we set to 0.2.
We chose to employ the hard-margin loss presented in [3],
where v̄v is chosen to be the representation of the negative
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Figure 1. Proposed model derived from [4]. We extract embeddings from two modules: a counting module and a concepts module. These
embeddings are then concatenated and input to Fully-Connected layers to obtain new embeddings. That model is also trained using a triplet
loss.

video with the highest similarity with the query representa-
tion vs among all videos in the current training mini-batch.

4. Fusion Strategy
In this section we will describe the two multimodal mod-

ules we used and how we fused them.

4.1. Multimodal Modules

Our model relies on two multimodal modules: a count-
ing module and a concepts module (see Figure 1). Each of
them has the architecture we described in Section 3.1 and
has been trained according to the optimization scheme we
defined in Section 3.2.

The counting module is based on a Faster-RCNN [10]
trained on the OpenImagesv4 dataset [7]. It takes images
as inputs. For each input, it detects objects belonging to
the 600 classes of OpenImagesv4 and counts them to ob-
tain a vector of dimension 600, where the value at index
i corresponds to the number of detected objects of class i.
Embeddings are then derived from that vector.

The concepts module takes as input concepts detec-
tions coming from four different concept detectors. These
concept detectors are ResNet [5] models trained on Ima-
geNet1k, Places-365 [16], TRECVID SIN [15] and HAVIC
[12]. Following the same process as for other two modules,
we generate embeddings from the concatenation of the con-
cept detections coming from these four detectors.

4.2. Fusion Model

Instead of simply averaging similarity scores to compare
videos and queries, we chose to train a model to draw finer
similarities between them. For that purpose, we derived
embeddings from our modules for videos and queries, and
passed them through Fully-Connected layers to obtain new
embeddings. More formally, if v1

v and v2
v are video embed-

dings respectively generated by the counting module and
the concepts module, we derived the new video embedding
vv by inputting the concatenation of v1

v and v2
v to a fully-

connected layer. We obtained the new sentence embedding

vs similarly, based on v1
s and v2

s (sentence embeddings gen-
erated by the counting and the concepts modules, respec-
tively).

We trained our fusion models using the same triplet loss
as we did for multimodal modules, as decribed in Section
3.2.

5. Results of runs
In this section, we report the results we obtained at

TRECVid 2019.

5.1. Datasets

We trained our models based on the MSCOCO [9]
dataset the TGIF [8] dataset and the train and test splits of
the MSR-VTT [14] dataset. Validation has been performed
on the validation split of MSR-VTT.

5.2. Implementation details

We implemented our models using the Tensorflow [1]
framework for Python. Each of them has been trained for
150k iterations with mini-batches of size 64. We used the
RMSProp [13] algorithm, with gradients capped to values
between -5 and 5 and a learning rate of 10�4. Hidden di-
mensions of GRUs are always 1024, and embeddings output
by multimodal modules and fusion models are of dimen-
sion 512. The size of vocabularies has been set to 20k. We
applied dropout [11] with rate 0.3 to all outputs of Fully-
Connected layers, and batch normalization [6] to the inputs
of our models. In triplet losses, the ↵ parameter has been
set to 0.2.

MSR-VTT videos have been processed as follows: we
extracted uniformly one frame every fifteen frames, applied
the extractor on each frame (Faster-RCNN for the counting
module or concepts extractors for the concepts module) and
averaged obtained vectors.

5.3. Results of Runs

The runs we submitted were the following:
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Run MAP
Run 1 0.014
Run 2 0.014
Run 3 0.020

Table 1. Results of our runs

• Run 1: Fusion of Concepts and Counting modules;

• Run 2: Concepts module alone;

• Run 3: If Q is a query, V a video, S1(Q, V ) the score
of the pair (Q, V ) computed in run 1 and S2(Q, V )
the score in run 2, the score in run 3 is S1(Q, V ) +
S2(Q, V ).

The scores we obtained with these three runs are reported
in Table 1.

Results of all automatic runs are reported in Figure 2.
Detailed results of Run 1, Run 2 and Run 3 are reported in
Figure 3, Figure 4 and Figure 5, respectively.

6. Conclusion
EURECOM runs performed badly with respect to other

runs. However, results got better when ensembling run
1 and run 2 into run 3. For future work, we think we
should investigate how other methods than multimodal em-
beddings perform. Moreover, we think that a finer sen-
tence processing method than using a single GRU should
be found, for instance putting emphasis on visual concepts.
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Figure 2. AVS Results (Fully Automated runs only)

Figure 3. Detailed results of EURECOM run 1
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Figure 4. Detailed results of EURECOM run 2

Figure 5. Detailed results of EURECOM run 3
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B.4 INA’s paper in VIEW [3]

This paper describes the results obtained using inaSpeechSegmenter on massive amount of
data. Despite the date shown in the paper, it was published in April 2019.
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Abstract: A large-scale description of men and women speaking-time in media is presented, based on the 
analysis of about 700.000 hours of French audiovisual documents, broadcasted from 2001 to 2018 on 22 TV 
channels and 21 radio stations.

Speaking-time is described using Women Speaking Time Percentage (WSTP), which is estimated using 
automatic speaker gender detection algorithms, based on acoustic machine learning models.

WSTP variations are presented across channels, years, hours, and regions. Results show that men speak 
twice as much as women on TV and on radio in 2018, and that they used to speak three times longer than 
women in 2004. We also show only one radio station out of the 43 channels considered is associated to 
a WSTP larger than 50%. Lastly, we show that WSTP is lower during high-audience time-slots on private 
channels.
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This work constitutes a massive gender equality study based on the automatic analysis of audiovisual material 
and offers concrete perspectives for monitoring gender equality in media.The software used for the analysis 
has been released in open-source, and the detailed results obtained have been released in open-data.

Keywords: Gender Equality, Digital Humanities, Machine Learning, Machine Listening, Speaker Gender 
Detection, Women speaking time percentage, Audiovisual description, open-data

1  I n t r o d u c t i o n

Gender equality in media is a concern which has been described using various methodologies. A panel of studies 
based on quantitative analysis are listed below. 

International Women’s Media Foundation realized world-wide comparative studies based on a sample of 59 
countries.1 Gender equality was described based on the percentage of women occupying top-decision making posts in 
medias according to their occupational status (governance, reporters, junior or senior professionals, ...), together with 
their average salaries and terms of employment (full-time, part-time, freelance, …). The World Association for 
Christian Communication has carried out quinquennial comparative studies since 1995, known as the Global Media 
Monitoring Project (GMMP).2 The last edition of this analysis was based on a sample of 114 countries, and is known 
as the largest international study of gender in the news media. GMMP describes gender equality as the proportion of 
female subjects covered in the news, as well as the percentage of female presenters and reporters detailed by age 
and topics (health, economy, …).

In France, studies on gender equality in media have been ordered by the government, and released as public reports 
based on the analysis of Gomez-Michelis-Mielczareck corpus (GMM).3 Equality was described based on the 
identification rate, defined as the percentage of oral references to male or female characters, and presence rate, 
defined as the proportion of male and female participants found in programs.

Since 2014, French media has been monitored by the French Higher Council of Audiovisual (Conseil supérieur de 
l’audiovisuel - CSA), which is an independent administrative authority in charge of ensuring a fair representation of 
men and women in French audiovisual programs.4 Gender equality issues are described through women and men 
presence rates. Participants are split into five categories based on the declarations of TV channels and radio stations: 
presenter, journalist, political guest, expert and other. Rates of presence are presented across time-slots associated to 
low and high audiences, as well as channels based on their status (public, private) and topics (news, generalist, 
music).

Among these descriptors of gender equality in media, men and women speaking time percentage, also known as 
expression rate, has been used in a relatively low amount of studies. Reiser & Gresy used it in their report 
based on GMM corpus analysis.5 Their corpus contains programs broadcasted on May 15, 2008 on 6 TV channels 
and 6 radio stations. The amount of recordings collected per channel or station ranges from 6 minutes to three hours. 
They show that in the 6 news programs analyzed, only 32 % of the speech-time was attributed to women speakers 
(excluding presenters), and that mean speech-turn time was 12 seconds for men and 9.1 secondes for women. 
Women and men speaking time was also presented in an experimental study conducted by Belgian CSA 

1 Carolyn M. Byerly, Global Report on the Status Women in the News Media, International Women’s Media Foundation [IWMF], 2011.
2 Sarah Macharia, Who makes the news?, Global Media Monitoring Project, 2015.
3 Michèle Reiser and Brigitte Gresy, L’image des femmes dans les médias, Secrétariat d’Etat à la solidarité, 2008.
4 CSA, La représentation des femmes à la télévision et à la radio - Rapport sur l’exercice 2016, Conseil supérieur de l’audiovisuel, 2017.
5 Reiser, L’image des femmes (shortened).
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(Higher Council of Audiovisual).6 The study was based on the analysis of 36 hours of programs broadcasted during a 
week and speech-time was presented for several age categories of men and women.

Manual estimation of speaking time in TV and radio programs is expensive and time-consuming. Studies describing 
expression rate and women speaking-time percentage are therefore limited to the analysis of relatively small amounts 
of data. This limitation induces biases related to the particular socio-political context of the day in which these 
estimates were made: this context may influence the topics covered in medias as well as the selection of program’s 
participants. Consequently, expression rate analyses are systematically presented together with a detailed description 
of the events corresponding to the particular day being analysed. This event description is necessary to characterize 
the bias affecting the description of the status of men and women in media.

More recently, larger scale studies based on the analysis of word-count per speaker were conducted, allowing us to obtain 
descriptors correlated to speech-time. These strategies were based on the use of external meta-data corresponding to 
document screenplays, describing the speaking characters’ names together with the lexical content of their utterances, and 
were restricted to fictions. This allowed to replace the costly viewing and annotation process of audiovisual documents by 
automatic procedures of textual film script analysis, and resulted in studies based on the analysis of 12 disney princess 
movies,7 and 2000 Hollywood movies.8 As pointed out by the authors, the limitation of this strategy is that screenplays are 
not a perfect transcription of film dialogues. Moreover, this approach is limited to materials associated to accessible 
screenplay, which excludes a large amount of the broadcasted materials (live shows, debates, ...). Authors of the 2000 films 
analysis made a quite polemical statement in favor of the introduction of data-driven approaches in civic debates: “But it’s all 
rhetoric and no data, which gets us nowhere in terms of having an informed discussion”.

Based on the recent advances in artificial intelligence and machine learning, this article presents an automatic 
approach aimed at describing Women Speaking Time Percentage (WSTP). This method relies on acoustic analysis 
systems allowing to distinguish male from female speech. Resulting analyses are performed on massive amounts of 
audiovisual documents. This analysis scale is aimed at reducing biases associated to manual studies realized on 
relatively small amounts of data. This approach is aimed at describing the evolution of the French audiovisual 
landscape, putting in evidence phenomena guiding the definition of qualitative studies, and proving to broadcasters 
with automated tools allowing them to estimate the impact of their policies for better gender representation.

2  A u t o m a t i c  S p e a ke r  G e n d e r  S e g m e n t a t i o n  S y s t e m

2 . 1  A u d i t o r y  P e r c e p t i o n  o f  S p e a ke r ’ s  G e n d e r

Differences between women and men speech are based on several auditory clues. Women speech is generally 
associated to higher pitch, to vowel formants located in higher frequencies and is more breathy. Contrast between men 
and women speech is partly due to physiological differences in vocal organs. Differences existing between men and 
women speech are also language-dependent, and related to the construction of gender identity in a given socio-cultural 
context.9 Gender recognition is therefore harder for speakers having marked accents (regional, foreign), extreme pitch 
ranges, or speaking using non-standard intonation (very expressive voice, imitation, mental disorder, ...). 

6 Sabri Derinoz, Muriel Hanot and Bertrand Levant, ‘How gender representations matter with generation in television?’, II International Conference 
Gender and Communication, 2014.
7 Carmen Fought et Karen Eisenhauer, ‘A quantitative analysis of Gendered compliments in Disney Princess Films’, Linguistic Society of America, 2016.
8 Hanah Anderson and Matt Daniels, ‘Film Dialogue from 2,000 screenplays, Broken Down by Gender and Age’, The Pudding, 2016, https://
pudding.cool/2017/03/film-dialogue/.
9 Erwan Pépiot, ‘Voice, speech and gender: Male-female acoustic differences and cross-language variation in English and French speakers,’ Corela 
(Cognition, représentation, langage), HS-16, 2015.
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2 . 2  A u t o m a t i c  S p e a ke r  G e n d e r  D e t e c t i o n

Analyses presented in this study were realized using inaSpeechSegmenter.10 This software, based on the acoustic analysis 
of audiovisual document soundtrack, outputs time-coded segments corresponding to music, women speech and men speech 
(Figure 1). This allows us to obtain hourly estimates of men and women speaking time, required to compute WSTP (Figure 2).

It has been built using deep Convolutional Neural Network models (CNN), a family of machine-learning algorithms that 
showed superior performances over other state-of-the art methods. This open-source software is freely available,11 
and is associated to an average processing time of about 70 seconds for one hour long documents, using machines 
equipped with Graphical Processing Units (Geforce 1080 Ti).

Machine-learning algorithms require examples corresponding to the concepts to be learned. Training examples should be 
representative of the diversity of the material handled by the software: accent, speaking-style, expressive modality, recording 
conditions... InaSpeechSegmenter’s models were trained using INA’s speaker dictionary, which is to our knowledge the biggest 
manually-annotated database of speakers issued from broadcast material.12 This dictionary was realized using semi-automatic 
annotation procedures based on Optical Character Recognition. TV news excerpts with personality name appearing on 
screen were presented to annotators in charge of manual validation. The resulting dictionary is composed of documents 
collected from 1957 to 2012, allowing a comprehensive representations of speaking styles and recording conditions across 
decades. It contains 32.000 speech samples corresponding to 1780 distinct mens (94h) and 494 womens (27h).

InaSpeechSegmenter’s evaluation was based in its ability to estimate WSTP. Estimator’s robustness was shown to be 
proportional to archive’s durations, since instantaneous gender detection errors counter-balance for reasonable long 
time intervals. Evaluations carried on manually annotated TV news resulted in WSTP estimation errors below 0.6% for 
archives longer than 30 minutes.

Figure 1. Interactive display of automatic speech segmentation output. First layer is the raw audio signal, second layer is the time-frequency 
representation of the signal. Last layer is the automatic prediction of the proposed speech segmenter in Music, Male and Female excerpts.

10 David Doukhan, Jean Carrive, Félicien Vallet, Anthony Larcher and Sylvain Meignier, ‘An open-source speaker gender detection framework for 
monitoring gender equality’, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.
11 https://github.com/ina-foss/inaSpeechSegmenter.
12 Félicien Vallet, Jim Uro, Jérémy Andriamakaoly, Hakim Nabi, Mathieu Derval and Jean Carrive, ‘Speech Trax: A Bottom to the Top Approach for 
Speaker Tracking and Indexing in an Archiving Context’, LREC 2016.
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Figure 2. Hourly speaking time obtained with our proposed gender equality monitor

2 . 3  A n a l y s i s  B i a s e s

InaSpeechSegmenter’s was trained and evaluated using only adult voices. Automatic detection of children 
voices is known to be challenging, and very few language resources allow us to train and evaluate systems 
aimed at detecting these voices.13 Since low acoustic differences exist between male and female children, 
automatic recognition systems generally focus on the recognition of child category regardless of their gender. 
Moreover, children voices used in cartoons, dubbed programs, or radio advertisements, are generally 
performed by adult actors, who do not necessarily have the same sex than the character they’re dubbing. 
Informal observations showed children voices encountered in audiovisual documents were either detected as 
music (cartoon characters with very theatral voices), or as women voices. This analysis bias was minimized by 
excluding from analysis children’s interest channels, as well as TV time-slots associated to child-oriented 
programs (6-9AM).

13 Björn Schuller, et al., ‘Paralinguistics in speech and language - State-of-the-art and the challenge’. Computer Speech & Language, 27(1), 4-39, 2013.
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Video 1. Brigitte Lecordier: the French voice of several famous male characters: Son Goku, Kevin Arnold (The Wonder Years), 
Oui Oui, Le Petit Nicolas, Booba...

Another bias to our analysis is related to the content of our evaluation material, which is mostly composed of news 
and debates, and do not contains fictions. Once again, this limitation is due to the scarcity of annotated speech 
resources related to fictions. Therefore, the error rate of our system was estimated using informal evaluations and 
looked similar to the rates obtained on the news and debates corpus.

3  C o r p o r a

Since 2001, INA has been collecting all the streams broadcast on a selection of TV and radio stations. Saving 24-hour 
streams is the result of political choices specific to France, which, to our knowledge, have no equivalent in the world. 
National audiovisual heritage safeguarding policies implemented in other countries are limited to a limited selection of 
programs. This French specificity allows the implementation of comprehensive approaches, based on the systematic 
analysis of all programs broadcast, resulting in a corpus of 700.00 hours of audiovisual documents. At the time of this 
analysis, TV feeds prior to 2010 were still stored on DVD and were not yet accessible via servers. For this reason, the 
analyzes performed on TV streams only covered the period 2010-2018.

3 . 1  F r e n c h  R a d i o  C o r p u s

Table 1 presents the 21 national radio station selection used for describing WSTP variations in French radio streams. 
Radio stations are described according to their status and their content. Content is based on Médiamétrie (French 
audience measurement company) classification for all stations except Radio Sud.14 Status is described using CSA’s 
taxonomy.15 This classification distinguishes public radios on the one hand, and five private radio categories on the 
other hand, each category being indicated by a letter from A to E:

14 Médiamétrie, ‘Grilles radio d’été, l’audience de la Radio en France en Juillet-Août 2017,’ 2017.
15 CSA, Hertzian private radio stations, Conseil supérieur de l’audiovisuel http://en.www.csa.fre05d.systranlinks.net/Radio/Les-stations-de-
radio/Les-radios-FM/Les-stations-de-radio-privees-hertziennes.
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Category A – Associative radio services performing a mission of social communication of proximity
Category B – independent local or regional radio services that do not broadcast nationally-recognized programs
Category C – local or regional radio services broadcasting the program of a national thematic network
Category D – national thematic radio services
Category E – general-purpose radio services with a national vocation

Radio station selection includes 7 public and 14 private radio stations. Analyzes were carried on streams broadcasted 
between 2001 and 2018. They were restricted to the time slots between 5 AM and midnight, in order to include largest 
audiences peaks in the analyses: 6-9 AM for the majority of radio stations,16 9PM-midnight for stations aimed at a 
teenage audience.17

Radio streams were split in one hour-long excerpts which were randomly selected for analysis with a 18% selection 
probability in order to lower computation time.

The amount of data kept for the description of expression rate is therefore corresponding to the amount of 
channels (21), multiplied by the number of hours considered per day (19), the number of days analyzed (18 
years) and the random selection rate (18%); accounting for about 486.000 hours of audio content (55 years of 
continuous stream).

Table 1. National radio channels selection used in the current study
Name Available since Status Content
Chérie FM 2002 Category C, D Music
Europe 1 2001 Category E Generalist
France Bleu 2001 Public Generalist
France Culture 2001 Public Thematic
France Info 2001 Public Thematic
France Inter 2001 Public Generalist
France Musique 2001 Public Thematic
Fun Radio 2001 Category C, D Music
MOUV 2012 Public Music
Nostalgie 2001 Category C, D Music
NRJ 2002 Category C, D Music
Radio Classique 2009 Category D Thematic
Radio France Internationale 2001 Public Thematic
RFM 2002 Category C, D Music
Rire et Chansons 2009 Category C, D Music
RMC 2001 Category E Generalist
RTL 2 2002 Category C, D Music
RTL 2001 Category E Generalist
Skyrock 2001 Category C, D Music
Sud Radio 2012 Category B, E Generalist (*)
Virgin Radio 2008 Category C, D Music

16 CSA, La représentation des femmes (shortened).
17 Reiser, L’image des femmes (shortened).
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3 . 2  F r e n c h  T V  C o r p u s

Table 2 presents the 22 TV channels selection used for describing women speaking time percentage variations in 
French televisual streams. This selection includes 7 public and 15 private channels. It has been realized in order to 
consider channels associated to the largest audiences, as well as channels associated to targeted specialities (news, 
sports, history, music, content aimed at a women audience).

Analyzes were carried on streams broadcasted between 2010 and 2018. They were restricted to the time slots 
between 10 AM and midnight, corresponding to TV audiences above 10%.18

TV streams were split in one hour-long excerpts. These were randomly selected for analysis with a 27% selection 
probability in order to lower computation time.

The amount of data kept for the description of expression rate is therefore corresponding to the amount of channels 
(22), multiplied by the number of hours considered per day (14), the number of days analyzed (9 years) and the 
random selection rate (27%); accounting for about 270.000 hours of audio content (30 years of continuous stream).

Table 2. TV channels selection used in the current study

Name Status
Available 

since Content
Arte Public 2010 French-German channel promoting culture and arts 
BFM TV Private 2010 National news
Canal+ Private 2010 Generalist with focus on movies and sports
Chérie 25 Private 2013 Generalist aimed at a female audience
C8 Private 2013 Generalist (Formerly D8 until September 5, 2016).
L’Équipe TV Private 2013 Sports
Eurosport Private 2010 Sports
France 24 Public 2011 International news broadcasted in 4 languages and 180 countries
France 2 Public 2010 Generalist. Second most watched channel in France
France 3 Public 2010 Generalist with regional and national programs: 24 regional editions et 44 local editions
France 5 Public 2010 Generalist with focus on educational and documentary 
France Ô Public 2010 Generalist with focus on overseas France
Histoire Private 2011 History
CNews Private 2010 National news (Formerly I-Télé until February 27, 2017)
La Chaîne Info Private 2010 National news
LCP/Public Sénat Public 2010 Politics (French National Assembly and Senate) and news
M6 Private 2010 Generalist. Third most watched channel in France
NRJ 12 Private 2010 Generalist with focus on entertainments
Téva Private 2011 Generalist aimed at female and familial audience
TF1 Private 2010 Généralist. Most watched channel in France and Europe
TMC Private 2010 Generalist
W9 Private 2010 Generalist with focus on music and entertainments

18 CSA, Les chiffres clés de l’audiovisuel français, édition du premier semestre 2015, Conseil supérieur de l’audiovisuel, 2015.
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4  G l o b a l  A n a l y s i s  o f  A u d i ov i s u a l  S t r e a m s

Figure 3. Mean Women and Men speech-time from 2010 to 2018

Massive analysis of TV and radio programs broadcasted between 2010 and 2018 show a strong imbalance in the 
distribution of speech time between women and men (Figure 3). On both mediums, men’s speech-time is at least twice 
as long than women’s speech-time. Women’s speech-time percentage is slightly larger on TV (32,7 %) than on radio 
(31,2 %).

Average results per channel observed between 2010 and 2018 are presented in Figures 4 and 5. Channels are 
displayed given two dimensions. Abscissa stands for the speech percentage, defined as 100-music percentage. 
Ordinate is women speaking time percentage (WSTP), defined as 100-men speaking time percentage.

In TV corpus, speech percentage varies between 62.5 and 93.8 %. It is minimal for W9 (music channel) and maximal 
for news channels, and to a lesser extent: sport channels. Larger variations of the speech percentage are observed in 
the radio corpus, ranging from 15.4% (RFM) to 95.5% (France Info). Two groups of stations can be done based on the 
value of the speech rate. Musical stations refers to the group of 12 stations having more than half of musical content 
(9 stations having more than two third of music). Non-Musical stations to the remaining stations having more speech 
than music, including 7 stations having more than 77% of speech.

TV and radio channels are all associated to speaking time percentages larger for men than for women, except Cherie 
FM, which is a musical station with a low amount of speech (19.2 %).

Non-musical radio is associated to a higher women expression rate in public than in private stations. Lowest women 
expression rates in radio are obtained on Skyrock (16.2%, hip-hop music and teenage audience) and RMC (16.9 %, 
large amount of sport).

In TV, WSTP varies between 7.4 et 47.9 %. Speaking time percentage is therefore higher for male than for female in 
all considered TV-channels. It is minimal for sport channels (Eurosport, L’Équipe, and in a lesser extent CANAL+), and 
slightly lower than average in channels specialized in cultural or educational programs (Histoire, Arte, France 5). 
Private news channels (I-Télé, LCI, BFM-TV) have similar characteristics (speech percentage between 89.7 and 90.7 
%, WSTP between 33.5 and 35.4%). Only four channels were associated to women expression rates above 40%: the 
two channels aimed at women audience (Téva et Chérie 25), France 24 et M6.

The case of France 24 is of particular interest: this channel presents the highest women speech time percentage (44.8 
%) among TV stations that do not focus explicitly on women-oriented programs. This singularity is quite paradoxical 
since France 24 is the international showcase of French TV, contributing to convey a distorted image of French 
audiovisual landscape, where global women and men speech-time is similar.
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Figure 4. Speech percentage and women speaking time percentage observed in TV-channels from 2010 to 2018. Click here for 
the dynamic version of this figure.

Figure 5. Speech percentage and women speaking time percentage observed in radio stations from 2010 to 2018. Click here for 
the dynamic version of this figure.

5  Ye a r l y  E v o l u t i o n  o f  W o m e n  E x p r e s s i o n  R a t e

Figures 7 and 6 presents the evolution of women speaking-time percentage (WSTP), on TV from 2010 to 2018, and 
on radio from 2001 to 2018. Results are presented together with the median expression rates observed on public and 
on private channels. Linear regression procedures were used to associate to each channel an annual slope of WSTP 
evolution, as well as a p-score allowing us to describe the statistical significativeness of the corresponding slope.19 
Statistically significative evolutions were defined as those associated to a p-score < 0.05.

19 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html.
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Figure 6. Women speaking time evolution on Radio from 2001 to 2017. Click here for the dynamic version of this figure.

Median WSTP evolution in radio channels has increased regularly since 2004. It increased from 25.1 % in 2001 to 34.4 % in 
2018. In other words, the French radio landscape changed from a configuration where men’s speaking-time was three time 
longer than women’s to a configuration where men’s speaking-time is twice longer than women’s. While these proportions 
are still highly unbalanced, this shows fast changes in French radio landscape. While private radio station have slightly lower 
WSTP than public, the annual evolution of WSTP of about 0.5 % point is observed in public and private stations. Statistically 
significant evolutions were found for 17 stations out of 21. Three stations were associated with a negative WSTP evolution: 
Radio Classique (-1.02 / year), RMC (-0.52 % / year) and Skyrock (-0.24 %/year). Stations associated to the highest WSTP 
evolutions are Sud Radio (+1.7% / year), France Musique (+1.08 % / year) and RTL2 (+0.95 % / year).

Figure 7. Women speaking time evolution on TV from 2010 to 2018. Click here for the dynamic version of this figure.
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While median WSTP evolution is statistically significative in TV channels ( +0.53 % / year), several differences can 
be observed between public and private channels. Median WSTP evolution is statistically significative for public 
channels (+0.79 %/ year) and increased from 28.4 % in 2010 to 35.4 % in 2018. No significative evolution was 
found for the median WSTP of private channels. In 2010, WSTP used to be larger in private channels (31.5 %)  
than in public channels. Since 2017, WSTP is larger in public channels. Statistically significative evolutions of 
WSTP were found for 11 TV stations out of 22. These evolutions were found to be negative for two stations 
stations L’Equipe 21 (-2.44 % / year) and I-Télé/CNews (-1.18 %/ year). Largest WSTP evolutions were found for 
France 5 (+1.28 % / year), Histoire (+1.01 %/ year), LCP/Public Sénat (+0.94 % / year) and France 2  
(+0.94 % / year).

6  H o u r l y  A n a l y z e s

Analyzes presented below describe variations of audiovisual content, on a hourly basis. Music and speech time 
estimates were obtained from archives broadcasted from 2010 to 2018, excluding weekends, civil and school 
holidays.

Higher and lower audience time-slots were approximated, inspired by CSA studies.20 High audience time-slots were 
defined as 3-hours long contiguous time-range: 6-9AM for radio and 7-10 PM for TV. 

6 . 1  S p e e c h  a n d  M u s i c  H o u r l y  P e r c e n t a g e s  i n  M u s i c a l 
R a d i o  S t a t i o n s

Speech and music percentage hourly variations are necessary to put in context hourly WSTP variations. These 
descriptions allows us to tell if a given WSTP extreme is related to a time-slot associated to a reasonably large amount 
of speech, which is of special importance for musical radio stations which may have very scarce amount of speech 
according to the time-slot considered.

Figure 8 presents speech-percentage hourly variations observed in the twelve identified musical radio stations, having 
more than 50% of music in their programs. Median speech percentage is associated to its largest values during 
high-audience slots with a peak of 59.5 % between 8 and 9 AM. Three main broadcasting strategies can be observed 
from the data. A first group of channels is associated to a peak of speech in early morning (Chérie FM, Nostalgie) and 
a lower amount of speech the rest of the time. The second group is associated to two peaks of speech: a first one in 
the early morning, and a second one in the early or late evening. This most representative stations of this group are 
those targeting teenage audiences: Skyrock, NRJ and Fun Radio. This group includes to a lesser extent: Virgin Radio, 
RFM and RTL 2. Last group has three main speech peaks: a first one in the early morning, a second one at lunch time 
and a third one in evening: it includes Radio Classique and le MOUV and in a lesser extent France Musique.

It has to be noted that some time-slots of musical stations contain a very low amount of music. This percentage is 
below 4% from 7 to 9 AM on Radio Classique, and below 15% from 9PM to 12AM on Skyrock.

20 CSA, La représentation des femmes (shortened).
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Figure 8. Speech time percentage (100 - Music time percentage) variations in musical radio stations from 5 AM to 
midnight. Click here for the dynamic version of this figure.

6 . 2  W o m e n  H o u r l y  E x p r e s s i o n  R a t e

Figure 9. Women speaking time variations on TV from 10 AM to midnight. Click here for the dynamic version of this figure.
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Figure 10. Women speaking time variations on TV from 5 AM to midnight. Click here for the dynamic version of this figure.

Figures 9 and 10 present WSTP variations over hours, for measures obtained from 2010 to 2018; excluding 
weekends, civil and school holidays.

Median WSTP were lower during high audience time slots for private TV channels (-7.8 %) and private radio stations 
(-4.5 %). They were similar for public TV channels (+0.29 %) and slightly higher for public radio stations (+1.63 %).

TV stations associated to the largest negative WSTP differences between high and low audience time-slots are 
France 2 (-10 %), NRJ12 (-8.1 %) and Chérie 25 (-7 %), while those associated to the largest positive differences are 
France 3 (+8.7 %), ARTE (+6.2 %) and Histoire (+3.2 %).

Observed WSTP variations between high and low audience time-slots are stronger for radio stations. Stations 
associated to largest negative differences are Radio Classique (-14.6 %), Virgin Radio (-14.2 %), NRJ (-12.9 %) and 
Fun Radio (-10.6 %). Stations associated to the largest positive differences are France Musique (+12.1 %), RTL 2 
(+9.7 %) and RMC (+5.4%).

7  R e g i o n a l  D i s p a r i t i e s

7 . 1  F r e n c h  R e g i o n a l  T V  N e w s  C o r p u s

Regional TV corpus contains the entire collection of 19/20 regional editions broadcasted on France 3 in 2016. 19/20 is 
a regional news program broadcasted in prime-time having large audience parts varying between 14 and 21%21 22 23.

21 Florian Guadalupe, Audiences access : Le “19/20” de france 3 leader, “c à vous” et “28 minutes” en forme, Pure médias, 2016.
22 France 3 : Le 19/20 au dessus des 20% de parts d’audience cette semaine, Pure médias, 2010.
23 Benjamin Meffre, Audiences access : Nagui leader en baisse, “le 19/20” devant “dna”, “c à vous” en forme, Pure médias, 2017.
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24 regional editions of 19/20 are broadcasted simultaneously from 7 to 7:30 PM. They may be interrupted by 
advertisements or weather reports and are followed by the national edition of 19/20. Regional editions correspond 
to France’s metropolitan division prior to 2016 in 21 administrative regions, with the addition of Corsica. Region 
Provence-Alpes-Côte d’Azur has two distinct editions (Provence-Alpes, Côte d’Azur) as well as Rhône-Alpes 
(Rhône, Alpes).

Regional news editions were detected in TV streams using automatic image processing methods, based on  
the recognition of the specific banner displayed (Figure 11). This strategy allows robust detection of regional 
news start and end times. It also allows us to discard programs that may interrupt regional news: 
advertisements, weather forecasts, special national editions, substitute programs used in case of strike or a 
technical issue. Each regional edition was associated to 132 hours of programs per year, accounting for a total 
of 3200 hours.

Figure 11. Regional edition of 19/20 newscast screenshot, containing a banner displaying 19/20 followed 
by the name of the considered region or locality.

7 . 2  G l o b a l  A n a l y s i s  o f  F r e n c h  R e g i o n a l  T V  N e w s

Figure 12 details WSTP observed in the 24 regional editions of 19/20 news program. This percentage varies between 
25.89 and 52.9%. Alsace and Nord-Pas-de Calais are the only editions associated to an expression rate larger for 
women than for men. Seven editions out of 24 have approximately equal speaking time percentages per gender 
(between 45 and 55%): Alsace, Nord-Pas-de-Calais, Ile-de-France, Picardie, Bretagne, Provence-Alpes, Languedoc-
Roussillon. Women expression rate was found to be lower than a third in four regional editions: Lorraine, Midi-
Pyrénées, Auvergne and Aquitaine.
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Figure 12. Women speech-time percentage in 19/20 regional news, broadcasted by France 3 in 2016. Click here for the 
dynamic version of this figure.

A correlation analysis was realized between WSTP and the number of inhabitants per departments. Non-parametric 
Spearman’s test was used for the estimation of this correlation.24 Moderate positive (rho=0.453) and statistically 
significant (pvalue < 10-5) correlation suggest that departments with larger amount of inhabitants are generally 
associated to larger women expression rate in 19/20 programs.

7 . 3  W o m e n  S p e e c h  T i m e  a n d  P e r c e n t a g e  o f  Fe m a l e 
P r e s e n t e r s  i n  R e g i o n a l  N e w s

For each regional news program, the identity of the presenter was obtained from manual documentation procedures, 
realized within INA’s archiving missions. The exploitation of this data allowed us to obtain the percentage of female 
presenters occuring in 19/20 regional news broadcasted in 2016, shown in Figure 13.

24 Daniel Zwillinger and Stephen Kokoska, CRC standard probability and statistics tables and formulae, Chapman & Hall, 2000.
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Figure 13. Percentage of female presenters in regional TV news. Click here for the dynamic version of this figure.

The variations of female presenters is much wider than the variations of WSTP observed in regional news. 11 regional 
editions have a larger proportion of women presenters, with percentages above 80 % found for Languedoc Roussillon, 
Alsace and Poitou Charentes. A single regional edition was found to have more than 80 % of male presenters: Paris 
Île de France.

The relations between women speech-time percentage and the percentage of women presenters allows us to 
describe further the complexity of image equality issues in TV. The relatively high WSTP found in Alsace, Poitou 
Charentes and Languedoc Roussillon is therefore mainly due to a large presence of women presenters, but may hide 
a low amount of non-presenter women speaking during regional news. Conversely, despite its low amount of women 
presenters, Paris Île-de-France managed to have similar speech-times percentages for men and women.

8  C o n c l u s i o n

This study presented describes gender equality in French media, based on the description of Women Speaking Time 
Percentage (WSTP). This estimate of equality was obtained using automatic machine learning procedures allowing us 
to detect music, men and women speech in audio streams. This automation allowed the estimation of men and 
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women speaking time percentage on 700.000 hours of audiovisual documents, which would be unfeasible through 
manual analysis.

Several tendencies were highlighted: Men speaking time percentage is about twice that of than women’s in French TV 
and Radio, but used to be three time bigger in 2004. We show WSTP is much lower on private channels during 
high-audience time slots. We also show that WSTP is lower in sport and cultural TV channels, which correlates 
manual gender equality studies:25 Le sérieux d’Arte se fait donc avec les hommes ; l’émotion de M6 se fait avec les 
femmes (seriousness of Arte is done with men; emotion of M6 is done with women). 

While WSTP is a metric well suited to automatic extraction, presence rate (amount of distinct speakers), which 
is a reference metric in several manual studies, is still challenging to obtain through automatic procedures. We 
believe these two metrics should be used together in order to improve the description of equality issues in 
media. An informal comparison of these two metrics is presented, based results obtained in 2016 through our 
approach and CSA estimates.26 This comparison should be treated with caution, since the channels list 
considered in our 2 studies have few differences. In 2016, we found a WSTP of 33.6 % for TV and 32.9 % on 
radio, while CSA reported women presence rates of 40 % in TV and 36 % on radio. During high-audience time 
slots on radio, we found a WSTP of 30.1% while CSA reported a women presence rate of 35%. These 
observations suggest WSTP estimates are lower than women presence rates. Similar conclusions can be 
obtained for the channels reported in the CSA study: C8, Canal+, France 2, France 3, France O, and W9. This 
observation may be relevant with respect to Reiser & Gresy’s study showing women speech turns are shorter 
than men’s,27 in other words: having the same amount of men and women in programs does not guarantee 
equal amount of speech-time.

The opportunities of exploitation of the massive amount of data obtained through our methodology are 
numerous, and may benefit from the use of additional structured data allowing to put WSTP into context: channel 
governance and budget, detailed audience metrics, program description, identity of presenters, regional 
statistics… The work required to constitute such structured data is huge and goes far beyond the scope of our 
study. Consequently, we released the results of our analyses in open-data, which are now freely accessible 
through data.gouv.fr, which is the open platform for French public data.28 The proposed dataset contain 
additional data which we was not described in this study corresponding to 21 radio and 34 TV stations, 
broadcasted from 1995 to March 2019, accounting for more than 1 million of analyzed time-slots. Data is 
presented as a raw csv database containing 1 million of entries, each of them corresponding to the duration of 
music, women speech and men speech for a particular hour, together with meta-data (private or public channel, 
civil and school holidays, week-day,...). We hope this data will help further research in digital humanities and 
contribute to a better understanding of gender equality issues in media.

Although this would be tempting to compare the results obtained in France to other countries, some 
technological locks need to be addressed. The first lock is related to the gender detection system, which is 
language dependent (see section 2). The management of audiovisual documents in other languages would 
require us to build and evaluate similar systems of each language. This could be done with STEM efforts, and 
may require the creation of annotated data to be used for training and evaluation. The second lock is much 
more difficult to address. As stated in section 3, France is to our knowledge the only country in the world which 
records and archives the integrality of its audiovisual streams (since 2001): most countries do archive only a 
specific selection of programs. Unrecorded audiovisual streams are definitely lost, limiting the knowledge that 
could be obtained through the improvement of automatic audiovisual analysis procedures. Consequently, 

25 Reiser, L’image des femmes (shortened).
26 CSA, La représentation des femmes (shortened).
27 Reiser, L’image des femmes (shortened).
28 https://www.data.gouv.fr/fr/datasets/temps-de-parole-des-hommes-et-des-femmes-a-la-television-et-a-la-radio/.
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comparisons across countries would require a definition of methodologies optimizing the use of available 
archives for each considered country.

Speaking time percentage per gender is a surface equality descriptor, which is not sufficient to fully describe 
gender representations in media. Further STEM research efforts are required to prove the viability of additional 
descriptors obtained through automatic analysis of audiovisual documents. Among these descriptors, we’re 
currently working on face detection and gender classification systems, aimed at comparing the differences 
between speech-time and facial exposition in TV, and helping in the estimation of the presence rate. We also 
built early prototypes based on modern speech-to-text softwares, in order to obtain information related to 
speech transcriptions. Such information allowed us to obtain Identification rate estimators (number of oral 
references to men and women characters), and may probably be extended to the description of the topics 
covered by men and women.29 Unlike speech-time estimation, image and speech transcription processings are 
costly and require much longer processing times (ten to sixty times as much). Large scale analyses based on 
these descriptors will require significantly larger computational power, and will hopefully benefit from the future 
advances of computing hardware.
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B.5 INA’s paper in La revue des Médias [4]

This paper describes the results obtained using inaSpeechSegmenter on massive amount of
data. This paper met with a large media success in the French audiovisual landscape.
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3/11/2019 À la radio et à la télé, les femmes parlent deux fois moins que les hommes | InaGlobal

https://www.inaglobal.fr/television/article/la-radio-et-la-tele-les-femmes-parlent-deux-fois-moins-que-les-hommes-10315 1/12

Sommaire
- Un déséquilibre à géométrie variable
- Sur les chaînes privées, les femmes parlent moins aux heures de forte audience
- Des évolutions positives, en particulier sur les chaînes publiques
- Quelques disparités régionales : le 19/20 de France 3
- S’emparer des vastes possibilités d’exploitation de ces données : un enjeu sociétal
- Méthodologie
- 700 000 heures de programmes TV et radio analysées

Récemment déclarée « grande cause du quinquennat », la question de l’égalité entre les femmes et
les hommes est un sujet qui suscite de nombreux débats et passions. La description objective des
différences de représentation existant entre les hommes et les femmes dans les médias est un enjeu
sociétal majeur, nécessaire pour rationaliser les débats citoyens et orienter les décisions politiques.
 
Lorsque j’ai été amené à présenter mes travaux dans des congrès scientifiques, j’ai à de nombreuses
reprises rencontré des hommes qui m’ont déclaré « Les femmes parlent trop » lorsque je leur ai
décrit ma thématique de recherche. Ces mêmes hommes ont été les premiers surpris lorsqu’ils ont
découvert les conclusions des analyses présentées dans cette étude.
 
 
Plusieurs études fondées sur l’analyse quantitative du contenu des médias ont été menées ces
dernières années pour décrire ces différences de représentation. On pourra citer le Global Media
Monitoring Project (GMMP), ou encore les analyses menées par le Conseil supérieur de l’audiovisuel
(CSA), qui sont fondées entre autres sur la description du taux de présence, défini comme le

Pour la première fois, une intelligence artificielle a mesuré le temps de parole des femmes et
des hommes dans les médias français. Réalisée sur 700 000 heures de programmes, soit le
plus gros volume de données jamais analysé au monde, cette étude dresse un état des lieux,
chaîne par chaîne, depuis 2001.
 

À la radio et à la télé, les femmes parlent deux fois
moins que les hommes
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Un déséquilibre à géométrie variable
L’analyse massive des fonds collectés de 2010 à 2018 dresse un état des lieux caractérisé par un fort
déséquilibre entre le temps de parole utilisé par les hommes et les femmes. Les prises de parole des
femmes à la télévision représentent moins d’un tiers du temps de parole alloué (32,7 %). Ce constat
est encore plus frappant à la radio où il n’est que de 31,2 %, comme le montre la figure ci-dessous.   
 
 

 
 

pourcentage d’hommes et de femmes présents à l’antenne. Ce taux peut être présenté par
catégories correspondant au statut des intervenants (reporter, expert, journaliste, témoin, invité
politique...), ou encore aux sujets traités (économie, santé, éducation…).
 
Les études fondées sur l’analyse du taux d’expression, défini comme le pourcentage de temps de
parole attribué à des femmes ou à des hommes, sont rares. On pourra néanmoins citer le rapport
public coordonné par Michèle Reiser et Brigitte Grésy, L'image des femmes dans les médias
(commandé par le secrétariat d’État à la Solidarité), fondé sur l’analyse d'émissions diffusées le 15
mai 2008 (temps d’analyse compris entre 6 minutes et 3 heures par chaîne), ainsi qu’une étude
menée à titre expérimental par le CSA de la Communauté française de Belgique, Les représentations
femmes-hommes sont-elles influencées par les générations ?, fondée sur l’analyse de 36 heures de
programmes collectées pendant une semaine.
 
La mesure manuelle du temps de parole est coûteuse, ce qui explique que les analyses produites à
ce jour ont été réalisées sur des échantillons de taille limitée. Ces limitations peuvent se traduire par
des biais d’analyse, tendant à généraliser des situations observées sur des échantillons non
représentatifs, et ne permettant pas d’apprécier l’évolution de ces phénomènes observés dans le
temps.
 
Cette étude, conduite à l’INA (Institut national de l’audiovisuel), propose d’utiliser une intelligence
artificielle pour estimer le temps de parole des femmes et des hommes automatiquement (la
méthodologie complète est à retrouver en bas de l’article) Ce type d’approche vise à traiter une
masse de documents beaucoup plus importante et réduire les effets de biais liés à la taille de
l’échantillon d’analyse. Les phénomènes observés sont également susceptibles d'orienter des
analyses qualitatives, et de contribuer ainsi à créer de nouvelles connaissances en sciences
humaines.
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Le taux de parole (axe horizontal) correspond au pourcentage de parole observé sur les chaînes
proportionnellement aux autres phénomènes (musique, bruits d’environnement, applaudissements...).
Il est indépendant du sexe du locuteur. Un taux de parole égal à 0 signifie que la chaîne ne diffuse
que de la musique, et un taux égal à 100 correspond à une chaîne ne diffusant que de la parole. Le
taux de parole varie entre 62,5 et 93,8 %. Il est minimal sur W9 (chaîne musicale) et maximal pour
l'ensemble des chaînes d'information ainsi que pour les chaînes de sport.
 
Le taux d’expression des femmes (axe vertical) correspond au pourcentage de temps de parole
attribué à des femmes. Un taux égal à 0 signifie que les femmes ne parlent pas à la télévision, un
taux égal à 50 signifie que le temps de parole des femmes et des hommes est égal, un taux égal à
100 signifie que seules des femmes parlent à l’antenne.
 
Quelle que soit la chaîne considérée, le taux d'expression des femmes est inférieur à 50 %, ce qui
signifie que sur l’ensemble des chaînes TV, les hommes parlent davantage que les femmes. Les
chaînes où les femmes ont un temps de parole maximal sont les chaînes visant un public féminin
(Téva, Chérie 25). Les chaînes diffusant du contenu sportif, sont quant à elles associées aux plus
faibles taux d’expression des femmes : 7,4 % pour Eurosport et 16,5 % pour La chaîne L’Équipe. Le
taux d’expression des femmes est plus faible pour les chaînes à programmation culturelle ou
éducative (Histoire, Arte, France 5) que pour les chaînes à contenu généraliste. Au sein des chaînes
généralistes, les plus forts taux d’expression des femmes sont observés sur M6 (40,9 %) et sur TF1
(36,1 %), tandis que le plus faible taux est observé sur Canal+, chaîne qui se démarque par une plus
grande programmation de contenu sportif. Ces observations renforcent les analyses réalisées à plus
petite échelle en 2008 dans le rapport d’État coordonné par Michèle Reiser et Brigitte Grésy, qui
observent que « le sérieux d’Arte se fait donc avec les hommes ; l’émotion de M6 se fait avec les
femmes »...
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Le cas de la chaîne France 24 est particulièrement intéressant. Cette chaîne d'information
internationale présente, après Téva, le deuxième plus haut taux d’expression des femmes (44,8 %).
Cette singularité est assez paradoxale, sachant que cette chaîne est une vitrine du paysage
audiovisuel français à l'étranger. Les disproportions de temps de parole entre les sexes observées
sur l’ensemble des chaînes nationales y étant beaucoup plus faibles, France 24 contribue ainsi à
véhiculer l’image faussée d’un pays où la répartition du temps de parole entre hommes et femmes
est relativement équitable...
 
En résumé, on observe donc que sur l’ensemble des chaînes de télévision, les femmes parlent assez
nettement moins longtemps que les hommes. Leur parole est davantage présente dans les chaînes
s'adressant à un public féminin, et elle est extrêmement faible dans les chaînes diffusant du contenu
sportif. Le temps de parole des femmes est comparable sur les chaînes d'information en continu et
les chaînes généralistes, et légèrement inférieur sur les chaînes diffusant des programmes culturels
ou éducatifs.
 
Chérie FM, seule station de radio où les femmes parlent davantage que les hommes
 

 
À la radio, on constate beaucoup plus de disparité dans le pourcentage de parole (par opposition au
pourcentage de musique), avec d’une part, les stations à programmation majoritairement musicale
(RFM, RTL2, Chérie FM...) qui diffusent plus de deux tiers de contenu musical, et d’autre part, des
stations contenant principalement de la parole (France Inter, France Info, RMC). Pour les stations
dont le contenu est principalement de la parole, le taux d’expression des femmes maximal est de
33,2 % sur Radio France International, et minimal sur RMC (16,9 %), une station diffusant beaucoup
de contenu sportif. 
La seule station contenant plus de parole de femmes que d’hommes est Chérie FM, ce qui reste
marginal sachant que cette station diffuse plus de 80 % de musique. Skyrock quant à elle, est de loin
la station musicale où les femmes ont le moins la parole, avec un taux d’expression de seulement
16,2 %.
 

20 40 60 80 100

15

20

25

30

35

40

45

50

Stations publiques
France Bleu
France Culture
France Info
France Inter
France Musique
MOUV
RFI
Stations privées
Chérie FM
Europe 1
Fun Radio
NRJ
Nostalgie
RFM
RMC
RTL
RTL 2
Radio Classique
Rire et Chansons
Skyrock
Sud Radio
Virgin Radio

Cartographie radio moyennée sur 2010-2018

Pourcentage de parole (100 - pourcentage de musique)
David Doukhan, "À la radio et à la télé, les femmes parlent deux fois moins que les hommes", INA, mars 2019

Po
ur

ce
nt

ag
e 

de
 p

ar
ol

e 
de

s 
fe

m
m

es
 

(1
00

 - 
po

ur
ce

nt
ag

e 
de

 p
ar

ol
e 

de
s 

ho
m

m
es

)

EDIT CHART

MeMAD – Methods for Managing Audiovisual Data
Deliverable 2.2

75



3/11/2019 À la radio et à la télé, les femmes parlent deux fois moins que les hommes | InaGlobal

https://www.inaglobal.fr/television/article/la-radio-et-la-tele-les-femmes-parlent-deux-fois-moins-que-les-hommes-10315 5/12

Sur les chaînes privées, les femmes parlent moins aux heures de forte
audience
Quand parlent les femmes ? Cette partie décrit les différences de taux d’expression des femmes
observées en fonction des heures de la journée, observées sur la période 2010-2018. Pour plus de
cohérence, nous avons exclus de ces mesures les programmes diffusés lors des week-ends, jours
fériés et vacances scolaires. Nous nous sommes inspirés de la méthodologie du CSA, définissant les
heures de forte audience comme le créneau 6 h – 9 h à la radio et 19 h – 22 h à la télévision.
 
Sur les chaînes de télévision privées, les femmes parlent moins aux heures de forte audience
 

 
Aux heures de forte audience, le taux d’expression des femmes baisse en moyenne de 3,2 %  sur
les chaînes de télévision privées, ainsi que sur les chaînes publiques (-1,1 %). Les plus fortes
augmentations du temps de parole des femmes aux heures de forte audience sont observées pour
les chaînes France 3 (+8,7 %) et Arte (+6,2 %). Les plus fortes baisses pour France 2 (-10 %), NRJ
12 (-8,1 %), et Chérie 25 (-7 %). Sur le créneau prime time (19 h -20 h), le taux d’expression des
femmes est de 37,7 % sur les chaînes publiques contre 24,6 % sur les chaînes privées.
 

Sur les stations de radio privées, les femmes
ont un plus faible taux de parole aux heures de

forte audience
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Des évolutions positives, en particulier sur les chaînes publiques
Dans les parties précédentes, nous avons mis en évidence de fortes disparités existant dans la
répartition du temps de parole entre les femmes et les hommes, plus particulièrement aux heures de
forte écoute. Ces inégalités de représentation tendent à se réduire au fil des années.
 

Le temps de parole des femmes à la radio a
augmenté de 9,3 % de 2001 à 2018

 

 
Aux heures de forte audience, le taux d’expression des femmes baisse de 2,7 % sur les chaînes
privées, et augmente de 0,3 % sur les chaînes publiques.
Les plus grosses disparités sont observées pour Radio Classique (-14,6 %), Virgin Radio (-14,2 %),
NRJ (-12,9 %), France Musique (+12,1 %)
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Le taux médian d’expression des femmes est passé de 25,1 % en 2001 à 34,4 % en 2018, soit une
augmentation d’environ 0,5 % par an pendant 18 ans. Les femmes parlent davantage sur les stations
publiques : l’écart maximal ayant été observé en 2015 (+ 4,7 %). Les évolutions les plus importantes
(statistiquement significatives) sont observées pour France Musique (+17,1 %), Europe 1 (+17 %),
RTL2 (+13,1 %), Sud Radio (+10,9 %), Fun Radio (+10,7 %), Nostalgie (+10 %), France Culture
(+9,6 %), France Inter (+8,8 %). Cette tendance à la hausse du temps de parole des femmes n’est
pas observée sur l’ensemble des chaînes, notamment RMC (-7,7 %), Radio Classique (-5,8 %) ou
encore Skyrock (-2,1 %).
 

Le temps de parole des femmes à la télévision
a augmenté 4,7 % de 2010 à 2018.
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Quelques disparités régionales : le 19/20 de France 3
L’exploration de l’intégralité des éditions régionales du 19/20 de France 3 — émissions d'informations
diffusées en prime time de 19 h à 19 h 30 — sur l’année 2016, permet d’établir des disparités
régionales du taux d'expression par sexe. Cette analyse a nécessité de mettre au point une
intelligence artificielle fondée sur l’analyse d’images, permettant de détecter le début et la fin des
éditions du 19/20, en se basant sur la reconnaissance des bandeaux caractéristiques de ces JT. En
raison des évolutions de l’aspect de ces bandeaux et de la complexité de cette recherche, celle-ci n’a
pu porter que sur une seule année. Elle offre toutefois une intéressante topographie de la situation
sur une année pleine. 

 
Le taux d’expression des femmes, toutes chaînes confondues, a évolué de 30,4 % en 2010 à 35,1 %
en 2018. Cette évolution est particulièrement visible sur les chaînes publiques (+7 %). Jusqu’en
2016, c’est sur les chaînes privées que les femmes avaient le plus de temps de parole, mais cette
tendance n’est plus vraie depuis 2017.
 
Les évolutions les plus importantes concernent France 5 (+9,3 %) et France 2 (+8,8 %). On observe
également une forte baisse de la présence des femmes sur la chaîne sportive L’Équipe (-10,1 %) et
sur CNews (-8 %).
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S’emparer des vastes possibilités d’exploitation de ces données : un enjeu
sociétal
L’étude présentée dans cet article a permis de décrire une partie des différences de représentation
existant entre les hommes et les femmes dans les médias, en se focalisant sur la répartition du
temps de parole.
 

 

Le pourcentage de parole attribué aux femmes dans les 24 éditions régionales varie entre 25.89 % et
52.9 %. L'Alsace et le Nord-Pas-de Calais sont les seules éditions pour lesquelles le temps de parole
des femmes est supérieur à celui des hommes. Sept éditions sur 24 sont associées à un temps de
parole par sexe à peu près égal (compris entre 45 et 55 %) : Alsace, Nord-Pas-de-Calais, Île-de-
France, Picardie, Bretagne, Provence-Alpes, Languedoc-Roussillon. Quatre éditions régionales sont
associées à un temps de parole des femmes inférieur à un tiers : Lorraine, Midi-Pyrénées, Auvergne,
Aquitaine.
 

Temps de parole des
femmes et inégalités
territoriales

Pourcentage de temps de parole des femmes observé dans les 24 éditions
régionales d'actualités du 19/20 de France 3, diffusées en 2016.

David Doukhan, "À la radio et à la télé, les femmes parlent deux fois moins que les
hommes", INA, mars 2019 
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Méthodologie

Comment l’IA a permis de distinguer les voix
d’hommes et de femmes
 
L’analyse des fonds télévision et radio a été réalisée à l’aide d’InaSpeechSegmenter, un logiciel libre
issu d’une collaboration entre le service de recherche de l’INA et le laboratoire d’informatique de
l’université du Mans. Il s’agit d’un logiciel d’analyse acoustique, permettant de localiser les zones de
parole au sein de documents multimédias, et de déterminer le sexe des locuteurs (personnes qui
parlent). La voix chantée n’est pas à proprement parler de la parole : elle est catégorisée comme
musique et exclue des analyses.

Les analyses présentées pourraient être approfondies en croisant les temps de parole avec d’autres
sources de données : budget de fonctionnement des chaînes, données d’audience détaillée, grilles
de programmation, événements sociaux et politiques… L’étendue des possibilités d’exploitation de ce
matériau est vaste, et dépasse très largement les limites de cette étude. Dans le cadre de la politique
d’ouverture des données entreprise par l’INA, l’ensemble des indicateurs générés lors de cette étude
a été mis à disposition sur data.gouv.fr, la plateforme ouverte des données publiques françaises.
Elles pourront ainsi être utilisées par l’ensemble des acteurs de l’audiovisuel, les chercheurs en
sciences humaines et sociales (SHS), journalistes, instances politiques, ainsi que l’ensemble des
citoyens.
 
La description des différences de représentation est complexe et on ne peut, bien évidemment, pas
se contenter de ne l’aborder qu'à travers le prisme du taux d’expression. Des efforts de recherche
supplémentaires sont nécessaires pour mettre au point des systèmes fiables d’analyse automatique
permettant de détecter les thèmes évoqués par les différents intervenants, les personnalités dont il
est question, ou encore le rôle des locuteurs.
 
C’est à cette fin que le projet de recherche Gender Equality Monitor a récemment été soumis à
l’Agence nationale de la recherche (ANR). Ce projet est porté par un consortium pluridisciplinaire
composé de deux professionnels de l’audiovisuel (INA, Deezer), deux laboratoires STIC (Limsi /
CNRS, Lium) et trois laboratoires SHS spécialisés dans l’étude du genre et des médias (Carism,
Lerass, ENS Lyon-CMW). Les retombées de ce projet devraient contribuer à une meilleure
compréhension du fonctionnement des médias et à alimenter les débats citoyens sur la place des
hommes et des femmes dans la société.
 

MeMAD – Methods for Managing Audiovisual Data
Deliverable 2.2

81



3/11/2019 À la radio et à la télé, les femmes parlent deux fois moins que les hommes | InaGlobal

https://www.inaglobal.fr/television/article/la-radio-et-la-tele-les-femmes-parlent-deux-fois-moins-que-les-hommes-10315 11/12

700 000 heures de programmes TV et radio analysées
Depuis 2001, l’INA collecte l’intégralité des flux diffusés sur une sélection de stations TV et radio. La
sauvegarde de flux captés 24 h/24 est le résultat de choix politiques spécifiques à la France, qui
n’ont, à notre connaissance, pas d’équivalent dans le monde. Les politiques de sauvegarde du
patrimoine audiovisuel national mises en place dans les autres pays sont limitées à une sélection
restreinte de programmes. Cette spécificité française permet la mise en place d’approches
exhaustives, fondées sur l’analyse systématique de l’ensemble des programmes diffusés.
 
L’échantillon d’analyse sélectionné pour cette étude est composé de 22 chaînes de télévision et 21
stations de radio. La sélection des stations a été réalisée de manière à faire apparaître les chaînes
associées aux plus fortes audiences, ainsi que certaines chaînes thématiques ciblées (informations,
sport, histoire, musique, contenu visant un public féminin). Les créneaux horaires sélectionnés
correspondent aux heures de plus forte audience : ils ont été fixés entre cinq heures et minuit pour la
radio, et dix heures et minuit pour la télévision.

  

 
Exemple d’analyse automatique : la figure du haut représente le signal audio brut. La figure du milieu
correspond à la représentation « temps-fréquence » du signal sonore, qui sert de base à son analyse
automatique. La figure du bas représente les portions de signal qui ont été attribué à des hommes
(H) et à des femmes (F).

 
La distinction entre les voix d’hommes et de femmes est modélisée à l’aide de réseaux de neurones
profonds (deep learning) : une famille de méthodes issues de l’intelligence artificielle. Les réseaux de
neurones nécessitent d’être entraînés à partir d'exemples pour pouvoir reconnaître des concepts :
plus les exemples sont variés et plus le système résultant est performant. Les exemples
d’entraînement utilisés sont issus du dictionnaire de locuteurs de l’INA, qui est à notre connaissance
la plus grande base de locuteurs annotée manuellement à partir de données audiovisuelles
(télévision et radio). Ce dictionnaire est composé de 32 000 extraits sonores diffusés de 1957 à 2012,
correspondant à 1 780 locuteurs et 494 locutrices distincts, s’exprimant en français.
 
Le système résultant permet d’estimer le taux d’expression des hommes et des femmes avec une
erreur inférieure à 0,6 %. Plus la durée analysée est importante, et plus l’estimation du taux
d’expression est robuste.
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1. les valeurs sont exprimées en pourcentage absolu ou point de pourcentage

 
L’échantillon radio est composé de 7 stations publiques (France Bleu, France Culture, France Info,
France Inter, France Musique, Le Mouv’ (désormais Mouv’), Radio France internationale/RFI) et 14
stations privées (Chérie FM, Europe 1, Fun Radio, Nostalgie, NRJ, Radio Classique, RFM, Rire et
Chansons, RMC, RTL, RTL 2, Skyrock, Sud Radio, Virgin Radio). Pour réduire le temps de calcul, les
flux ont été découpés en tranches d’une heure et 486 000 heures ont sélectionnées aléatoirement
pour être analysés, soit environ 18 % de la totalité des programmes diffusés sur ces créneaux.
 
L’échantillon TV est composé de 7 chaînes publiques (Arte, France 24, France 2, France 3, France 5,
France Ô, LCP/Public Sénat) et 14 chaînes privées : BFM TV, Canal+, Chérie 25, La chaîne
L'Équipe, Eurosport, Histoire, CNews (anciennement I-Télé), C8 (anciennement D8), LCI, M6, NRJ
12, Téva, TF1, TMC et W9. À l’époque où a eu lieu cette analyse, achevée en janvier 2019, les flux
TV antérieurs à 2010 étaient conservés sur DVD et n’étaient pas encore accessibles via des
serveurs. Pour cette raison, les analyses réalisées sur les flux TV n’ont porté que sur la période
2010-2018. Un total de 270 000 heures de contenu TV a été analysé, soit environ 27 % de la totalité
des programmes diffusés sur ces créneaux. 
 
 
Crédit :
INA. Illustration : Martin Vidberg. 
 
 
Ce projet a reçu des financements du programme Horizon 2020 de l’Union européenne pour la
recherche et l'innovation sous le Grant Agreement N°780069 (projet MeMAD, http://memad.eu).
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B.6 AALTO’s paper in ICASSP 2020 conference [5]

This paper describes AALTO experiments in speaker-aware training of attention based end-to-
end ASR. It has been published in the IEEE ICASSP 2020 conference.
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SPEAKER-AWARE TRAINING OF ATTENTION-BASED END-TO-END SPEECH
RECOGNITION USING NEURAL SPEAKER EMBEDDINGS

Aku Rouhe Tuomas Kaseva Mikko Kurimo

Aalto University, Department of Signal processing and acoustics

ABSTRACT

In speaker-aware training, a speaker embedding is appended
to DNN input features. This allows the DNN to effectively
learn representations, which are robust to speaker variability.

We apply speaker-aware training to attention-based end-
to-end speech recognition. We show that it can improve over
a purely end-to-end baseline. We also propose speaker-aware
training as a viable method to leverage untranscribed, speaker
annotated data.

We apply state-of-the-art embedding approaches, both
i-vectors and neural embeddings, such as x-vectors. We ex-
periment with embeddings trained in two conditions: on the
fixed ASR data, and on a large untranscribed dataset. We run
our experiments on the TED-LIUM and Wall Street Journal
datasets. No embedding consistently outperforms all others,
but in many settings neural embeddings outperform i-vectors.

Index Terms— end-to-end speech recognition, speaker-
adaptation, speaker-aware training, speaker embedding

1. INTRODUCTION

Speaker independent speech recognition models attempt to
find a suitable compromise for all speakers. Speaker adap-
tation lets the speaker independent models readjust to each
speaker, by leveraging some speaker specific information.
Fine-tuning the parameters of a DNN for each speaker sep-
arately would be computationally expensive and difficult,
because the models are black boxes with a very large number
of parameters. In hybrid HMM-DNN speech recognition,
an effective speaker adaptation method is appending speaker
embeddings to the input features, and having the DNN learn
to use this information [1]. We call this speaker-aware train-
ing [2].

In the attention-based encoder-decoder end-to-end (AED)
speech recognition [3, 4], fine-tuning the parameters for each
speaker’s acoustic characteristics is even more complicated,
since the DNN also implements an implicit language model.
In AED ASR, only a few speaker adaptation approaches have
been proposed so far [5, 6], and to the best of our knowledge,
speaker-aware training has not been applied to AED ASR.

In this work, we investigate speaker-aware training of
AED ASR. We compare three different speaker embedding

types: i-vectors [7], and two neural methods: x-vectors [8]
and a thin-ResNet neural network architecture [9]. We present
three main contributions.

Firstly, we show competitive word error rate improve-
ments on the TED-LIUM [10] and Wall Street Journal
(WSJ) [11] corpora. In our experiments, speaker-aware train-
ing outperforms an additional, end-to-end trained sequence
summary network component [5].

Secondly, we propose speaker-aware training as a vi-
able strategy to incorporate untranscribed data into the AED
paradigm. Similar to the popular method of incorporating
an external language model in shallow fusion [12], speaker-
aware training is not purely end-to-end. The speaker em-
beddings are trained separately. This is beneficial, since the
speaker embeddings can then be trained on untranscribed
speech data, which only needs speaker annotations. We ex-
ploit state-of-the-art speaker embeddings trained on the large
VoxCeleb datasets [13, 14]. We also compare these VoxCeleb
embeddings with speaker embeddings trained only on the
smaller fixed ASR datasets.

Thirdly, we show that neural embeddings outperform
i-vectors in some settings, although no embedding consis-
tently outperforms all others. In concurrent work, Rownicka
et al. [15] explore neural embeddings for speaker-aware train-
ing of HMM-DNN ASR, but do not find improvements over
i-vectors.

As a part of this work we present our findings in apply-
ing typical post-processing methods to the speaker embed-
dings: mean subtraction, dimensionality reduction and length
normalization. Particularly, in our experiments, we find L2-
normalization to be crucial. We show that neural embeddings
may not need any other post-processing steps.

2. RELATED WORK

Only a few speaker adaptation methods have been proposed
in AED ASR. In [5], a sequence summary network is added to
the model architecture, and in [6], additional learning objec-
tives are used to regularize the output of a speaker-dependent
network.

Speaker-aware training has been applied to connection-
ist temporal classification models (CTC) [16, 17], which are
trained with an end-to-end criterion. However, CTC models
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are an implicit HMM [18], and in practice they are typically
applied similarly to hybrid HMM-DNN models [19].

Rownicka et al. [15] are the first to present results where
neural embeddings are used in speaker-aware training. In
their work, i-vectors still outperform neural embeddings in
speaker-aware ASR. The authors argue that compared to
neural embeddings, i-vectors capture more additional infor-
mation, other than speaker identity. In speech recognition,
this other information, such as channel effects, are beneficial.
However, also in concurrent work, Raj et al. [20] use probing
tasks to show that x-vectors also encode channel information.

3. SPEAKER EMBEDDINGS

In speaker verification, the task is to distinguish whether two
speech segments are spoken by the same speaker or not. Typi-
cally a speaker embedding extractor is trained separately, and
then the embeddings are used as features for a binary clas-
sifier (such as cosine distance scoring or probabilistic linear
discriminant analysis). [21] In this work, we use three em-
bedding methods: i-vectors, x-vectors, and thin-ResNet em-
beddings.

I-vectors are based on factor analysis of Gaussian Mix-
ture Model (GMM) supervectors. Thorough overviews of the
method can be found in the related literature [22], but we omit
it here for brevity.

3.1. Neural speaker embeddings

In the context of all-neural AED ASR, neural speaker em-
beddings could enable further work in fine-tuning the embed-
dings in the end-to-end ASR task. Furthermore, recently in
speaker verification, neural speaker embeddings have been
shown to outperform i-vectors [13, 8, 9].

X-vectors are a popular neural speaker embedding type.
They use TDNN-layers, and are trained in speaker classifica-
tion. After training, the embedding is extracted as the output
of the second to last layer before the softmax. For details, see
the original paper [8].

Thin-Resnet embeddings are also trained in speaker
classification. Unlike the x-vectors, the model is a (2D)
convolutional neural network, which operates directly on
spectrograms, and includes an L2-normalization layer, after
which the embedding is extracted. More details can be found
in the original paper [9].

4. ATTENTION-BASED END-TO-END NEURAL
SPEECH RECOGNITION

Attention-based encoder-decoder end-to-end neural speech
recognition models [3, 4] have become a popular alternative
to conventional HMM-based systems. These models directly
transcribe speech to text. No language model or external
lexicon is needed, but they are learned implicitly.

VoxCeleb 1 VoxCeleb 2
Training hours 352 2442
Training speakers 1251 6112

Table 1. Details of the speaker embedding training datasets

Typically, the encoder is a pyramidal stack of bi-directional
LSTM layers (BLTSM). The decoder is typically a unidirec-
tional LSTM, and uses an attention mechanism to extract a
relevant weighted sum of the encoder outputs at each output
step.

The decoder of an attention-based E2E model learns an
implicit language model. However, it is only trained on the
transcripts of audio data. Much larger text-only datasets can
be leveraged to train an external language model.

The language model probabilities are then interpolated
with the ASR probabilites during decoding in shallow fusion.

4.1. ESPnet encoder

The encoder in our model is slightly different from the stan-
dard approach above. Our implementation comes from the
ESPnet toolkit[23]. The encoder is trained in a multi-task set-
ting, by adding a CTC-decoder in parallel. The CTC-decoder
is also used in inference, by interpolating the likelihoods from
both decoders. [24]

ESPnet also implements a hybrid convolution and BLSTM-
based encoder. However the convolution operation does not
make sense for the appended speaker embeddings, because
the embedding dimensions do not have any ordered structure.
Therefore, in our experiments, we do not use the convolu-
tional front-end.

5. EXPERIMENTS

5.1. Data

The untrascribed data x-vector and i-vector embedding ex-
tractors are trained on VoxCeleb [13] and VoxCeleb2 [14].
Furthermore, for the x-vectors, a large amount of data aug-
mentation is applied [8]. The thin-ResNet model is only
trained on VoxCeleb2. Table 1 lists the salient dataset details.

We run the speech recognition experiments on the TED-
LIUM (release 2) [10] and Wall Street Journal (si-284 training
set) [11] datasets. Table 2 shows the dataset characteristics.
The fixed data speaker embeddings are trained on these ASR
datasets’ respective training sets.

5.2. Embedding models

For the untranscribed VoxCeleb data embeddings, we use pre-
trained models available online [25, 26]. Table 3 compares
these embeddings in a speaker verification task. Neural em-
beddings outperform i-vectors.
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TED-LIUM WSJ
Training hours 207 82
Dev hours 1.6 1.1
Test hours 2.6 0.7
Training speakers 1242 283
Dev speakers 8 10
Test speakers 10 8

Table 2. Details of the speech recognition corpora used in
this paper

For the embeddings trained on the ASR data (we call this
the fixed data scenario), we adjust the embedding model hy-
perparameters to better suit these datasets, which are smaller
than the VoxCeleb datasets. For the i-vector model, we
choose 512 full-covariance Gaussians in the universal back-
ground model, and 100-dimensional i-vectors, without LDA.
For x-vectors, the configuration is otherwise the same as the
original VoxCeleb x-vector model [8], but the embedding size
is halved to 256, and the number of training epochs doubled
to 6. We arrived at these values using a heuristic: we pick the
values which yield the highest adjusted rand index (ARI) [27],
when clustered using spherical K-means. Spherical K-means
is L2-normalized, which was shown to be important in earlier
experiments. High ARI should reflect consistent embeddings,
which we believe should help in ASR, and the procedure is
computationally inexpensive. We first optimized the values
on the TED-LIUM data. On WSJ, the TED-LIUM i-vector
configuration resulted in a perfect 1.0 ARI, so we decided
to simply reuse the TED-LIUM-tuned configurations without
further optimization.

Furthermore, in the fixed data setting, we do not test the
thin-ResNet embeddings, because the implementation was not
readily available in the Kaldi toolkit.

EER
i-vector [25] 5.3
x-vector [25] 3.1
thin-ResNet [9] 3.22

Table 3. The pretrained VoxCeleb speaker embeddings com-
pared in speaker verification, on the VoxCeleb 1 test set. In
speaker verification, the common performance metric is equal
error rate (EER). It is the error rate at which there are equally
many false acceptances and false rejections.

5.3. Post-processing the embeddings

For the i-vector and x-vector embeddings, we test stan-
dard post-processing procedures: subtracting the training
set mean, dimensionality reduction by LDA, and using L2-
normalization. The LDA transform is trained on the speech
recognition training set; we reduce the dimensionality to

200, which is the x-vector default. The thin-ResNet output
is already L2-normalized, which would be undone by any
post-processing, so therefore we use the thin-ResNet outputs
as they are.

Table 4 shows x-vector and i-vector results without LDA,
and either subtracting the global mean or not. These ex-
periments indicate that with x-vectors the mean subtraction
hurts performance and with i-vectors it helps. We keep these
choices for all x-vector and i-vector experiments.

In the Kaldi toolkit [28] (which we use for feature dump-
ing), the default is to normalize to

√
d, where d is the dimen-

sionality of the embedding. In preliminary experiments, we
found that it is crucial to normalize to length 1. Otherwise, the
embeddings only hurt performance. Thus in all of reported
results, we have applied L2-normalization to unit length.

TED-LIUM Test Dev
No LM +LM No LM +LM

x-vector 20.1 17.2 20.9 18.1
x-vector subtract mean 20.5 17.2 21.0 18.2
i-vector 20.7 17.8 21.5 18.7
i-vector subtract mean 20.4 17.2 21.0 18.3

Table 4. WER results with and without mean subtraction,
for the VoxCeleb i-vector and x-vector embeddings without
LDA.

5.4. ASR model configurations

With all of our models, we follow the same ESPnet recipes as
Delcroix et al. for their sequence summary network (SeqSum)
approach [5], except we do not use convolutional layers in the
encoder for speaker-aware models as explained in section 4.1.
We also train standard character level RNNLMs similar to
Delcroix et al. [5], on the datasets’ respective text resources,
although note that Delcroix et al. do not present LM results on
TED-LIUM. Details are omitted here for brevity. We achieve
very similar baseline results, and therefore we present some
of their results in comparison with ours.

In all models, the encoder consists of six 320-unit BLSTM
layers, which subsample the input in time by a factor of four.
The decoder has one 300-unit LSTM layer, and uses location-
based attention, followed by a softmax layer, which outputs a
distribution over characters (32 in TED-LIUM, 50 in WSJ).
The models are trained for 15 epochs with the adadelta opti-
mizer, with a batchsize of 30. In decoding use beam search
with a beamsize of 20 for TED-LIUM and 30 for WSJ.

The encoders are trained with the multitask CTC-loss of
ESPNet, and this is incorporated in decoding [23]. We also
train some models on the WSJ task without the CTC-loss.
Without the CTC-loss we retune the language model weight
for the baseline model on the Dev93 set and use that same
weight in all other non-CTC-loss experiments.
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TED-LIUM Test Dev
No LM +LM No LM +LM

Fi
xe

d

Baseline 21.7 18.6 22.6 20.0
SeqSum [5] 21.1 - 21.7 -
i-vector100 20.9 17.9 21.4 18.9
x-vector256 21.5 18.4 23.0 20.0

+V
ox

C
el

eb

i-vector200-LDA 20.2 17.4 20.7 18.2
i-vector400 20.4 17.2 21.0 18.3
x-vector200-LDA 20.9 17.4 21.6 18.6
x-vector512 20.1 17.2 20.9 18.1
thin-ResNet512 20.7 17.2 21.0 18.3

WSJ Eval92 Dev93
No LM +LM No LM +LM

Fi
xe

d

Baseline 17.5 9.3 22.1 13.2
SeqSum [5] 16.3 8.7 21.3 13.2
i-vector100 17.6 8.5 22.3 11.3
x-vector256 16.2 8.6 20.3 11.6

+V
ox

C
el

eb

i-vector200-LDA 17.2 9.1 21.2 11.9
i-vector400 15.3 8.0 20.5 11.7
x-vector200-LDA 18.8 9.5 25.0 13.5
x-vector512 16.2 8.7 20.5 11.2
thin-ResNet512 16.7 8.7 20.4 11.6

Table 5. WER results of the main speech recognition ex-
periments. SeqSum refers to the sequence summary network
approach of Delcroix et al. The embedding methods denote
dimension, and whether LDA was used, in subscript. The
+VoxCeleb sections present the results with the pretrained
VoxCeleb embeddings. The Fixed sections present results
with embeddings trained on the fixed ASR data.

Our input features are mean and variance normalized 80-
dimensional Mel-filterbank energies, and pitch information,
which might not contribute in English, but we retain it for
conformity. We extract one speaker embedding for the whole
utterance, and append it to each feature vector.

5.5. ASR Results

Table 5 shows the main results of our experiments. The mod-
els without the CTC multitask loss are not directly compara-
ble, so their results are presented separately, in Table 6.

On the WSJ dataset, when not using an LM we get a better
baseline without the CTC-loss than with it. This is likely due
to the original recipe being tuned for the performance with a
language model.

6. DISCUSSION

We achieve around 7% relative WER improvements with
the VoxCeleb speaker embeddings. The VoxCeleb embed-
dings consistently perform better than the fixed ASR data
embeddings, which obtain around around 4% relative im-

WSJ Eval92 Dev93
No LM +LM No LM +LM

Baseline 14.9 10.7 18.7 13.7

+V
ox

C
el

eb

i-vector200-LDA 16.0 12.9 19.8 15.4
i-vector400 13.2 10.9 17.5 14.5
x-vector200-LDA 16.0 12.4 20.1 15.5
x-vector512 13.5 10.4 16.9 15.0
thin-ResNet512 12.9 10.6 17.2 14.1

Table 6. Results without the CTC task, i.e. a purely atten-
tional model. Again, the embedding methods denote dimen-
sion, and whether LDA was used, in subscript. All of the
speaker-aware methods used the Voxceleb embeddings.

provements. The fixed data embeddings still consistently
outperform the end-to-end sequence summary method. We
see speaker-aware training as a useful competitive evaluation
baseline when developing true end-to-end methods, such as
the sequence summary network.

No single embedding type consistently outperforms oth-
ers. However, when embeddings are trained on the larger
VoxCeleb dataset, the neural embeddings often outperform
i-vectors. We suspect the neural embeddings are better able
to leverage very large training sets. The thin-ResNet model
is, without any modification, a good candidate for end-to-end
finetuning in future work. For the x-vector approach, it seems
an L2-normalization layer is needed.

Our hyperparameter tuning procedure for the fixed ASR
data embeddings was quite ad-hoc. The ARI metric is proba-
bly closer to the speaker verification metric than ASR. How-
ever, the VoxCeleb embeddings are also originally tuned for
speaker verification. Good, sound criteria, which could be
used to separately optimize speaker embeddings for speaker-
aware ASR training, are an open research question.

Of the embedding post-processing steps, we see that L2-
normalization is crucial. We suspect the additional sensitivity
of the normalization to unit length might not be universal,
but rather particular to our implementation. Mean subtrac-
tion seems to work for i-vectors, but not for x-vectors. In
most experiments, LDA did not help, with the exception of
the VoxCeleb i-vector embeddings on TED-LIUM. However,
we do not investigate different LDA dimension sizes.

7. CONCLUSIONS

We have shown that speaker-aware training is a competitive
speaker adaptation approach in attention-based end-to-end
ASR. We propose speaker-aware training as a viable strategy
to incorporate untranscribed, speaker annotated data. When
trained on large speaker annotated data, we find that neural
embeddings can outperform i-vectors in speaker-aware ASR.
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B.7 AALTO’s paper in ASRU 2019 workshop [6]

This paper describes AALTO experiments in speaker diarisation. It has been published in the
IEEE ASRU 2019 workshop.
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SPHEREDIAR: AN EFFECTIVE SPEAKER DIARIZATION SYSTEM FOR MEETING DATA

Tuomas Kaseva1, Aku Rouhe1, Mikko Kurimo1

Aalto University, Department of Signal Processing and Acoustics 1

ABSTRACT

In this paper, we present SphereDiar, a speaker diariza-
tion system composed of three novel subsystems: the Sphere-
Speaker (SS) neural network, designed for speaker embed-
ding extraction, a segmentation method called Homogeneity
Based Segmentation (HBS) and a clustering algorithm called
Top Two Silhouettes (Top2S). The system is evaluated on a set
of over 200 manually transcribed multiparty meetings. The
evaluation reveals that the system can be further simplified
by omitting the use of HBS. Furthermore, we illustrate that
SphereDiar achieves state-of-the-art results with two differ-
ent meeting data sets.
Index Terms: speaker diarization, speaker embeddings, seg-
mentation, spherical K-means, silhouette coefficients

1. INTRODUCTION

Speaker diarization answers the question ”who spoke and
when” [1]. In this process, a given audio stream is segmented
into speaker turns: time intervals in which one speaker is
speaking. It is determined, which of the speaker turns have
the same speaker, but the actual identity (e.g. name) of the
speakers is not required. Speaker diarization is a necessary
subtask in many different speech applications such as creation
of speech corpora, speech translation and speech recognition
[1, 2, 3].

Speaker diarization is made difficult by the immense vari-
ability in speakers and recording conditions, and the unpre-
dictable and overlapping speaker turns of spontaneous dis-
cussion [1, 4]. For these reasons, speaker diarization is still
far from solved. In this paper, our main contribution is to pro-
pose a novel speaker diarization system which we have made
available online1. The system consists of three main compo-
nents which operate on three main tasks in speaker diariza-
tion: speaker modeling, segmentation and clustering [1].

The objective of speaker modeling is to embed a given
speech utterance in a space which is more suitable for speaker
discrimination [5]. Traditionally, this transformation has been
performed with either Gaussian Mixture model (GMM) or i-
vectors [6, 7]. Recently, also deep learning methods, both
metric learning based [2, 8, 9, 10] and classification based
[11, 12, 13], have been investigated. These methods have

1https://github.com/Livefull/SphereDiar

focused on creating neural speaker embeddings which have
been shown to outperform i-vectors on many occasions [2,
13, 14]. Furthermore, especially classification based methods
have shown great promise also in face verification [15, 16].
Motivated by these works, we choose to apply deep learn-
ing in our speaker modeling approach. We develop a novel
neural network which learns the speaker embeddings through
speaker classification. In this process, the network forces the
embeddings to beL2 normalized, or in other words, spherical.
In our experiments, we show that this relatively simple oper-
ation has a profound positive impact on the speaker diariza-
tion task. Consequently, we name the network SphereSpeaker
(SS), and our system SphereDiar.

In speaker diarization, segmentation refers to the task in
which audio stream is divided into partitions which can be
assigned to a single dominant speaker [1]. This procedure
consists of speaker change detection (SCD) and overlapping
speech detection (OSD) [1]. Whereas hypothesis testing
has been the standard approach in the former [1, 9], Hidden
Markov models accompanied with GMMs have been used in
the latter [1, 17]. However, just as in speaker modeling, deep
learning has recently been very successful in both OSD and
SCD [9, 18, 19, 20]. Nevertheless, a segmentation approach
which combines both OSD and SCD into a single process has
not been proposed, although the connection of OSD and SCD
has been well documented in literature [17]. In this paper,
we develop such an approach, which we call Homogeneity
Based Segmentation (HBS), and investigate its importance
for our speaker diarization system. HBS uses deep learning
and transforms the segmentation into a binary classification
task.

The most popular clustering approach in speaker diariza-
tion has been agglomerative hierarchical clustering (AHC)
[1, 4, 14, 21]. In addition, approaches exploiting Integer
Linear Programming (ILP) [22], Information Bottleneck (IB)
[23] and supervised learning [24] have been proposed. In our
approach, we choose a slightly different clustering method
which is based on using spherical K-means algorithm. This
algorithm is essentially the same as K-means but uses cosine
similarity as a distance distance metric and has L2 normalized
cluster centers [25]. The choice of the algorithm is based on
our preliminary experiments for clustering the speaker em-
beddings created with SS. However, the algorithm requires
the number of cluster centers as an input, which is typically
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unknown. Hence, in our method, we create multiple spheri-
cal K-means clusterings with a different number of clusters
and choose the best clustering based on an empirically found
and unsupervised criteria. These criteria are based on us-
ing silhouette coefficients [26] which, along with spherical
K-means were also found to be beneficial for the clustering
process. We call this method Top Two Silhouettes.

We show that our system achieves state-of-the-art results
with a challenging dataset consisting of meeting recordings.
Furthermore, we illustrate that these results are obtained even
without using HBS and that HBS has overall a little signif-
icance for our system. As a consequence, our system can
then be simplified considerably by excluding segmentation
entirely. This is not only convenient but also an interest-
ing discovery since especially OSD has been a prominent re-
search direction in speaker diarization [1, 4, 17, 20].

2. DATA

The meeting corpus is composed of AMI (Augmented
Multi-party Interaction) and ICSI (International Computer
Science Institute) corpus, both of which consist of audio
recordings of different meetings in various sites [27, 28].
Both corpora provide the recordings in multiple different au-
dio formats from which the 16 kHz Headset Mix is used in
all of our experiments. In order to create speaker diariza-
tion labels for a given meeting, we combine both manually
generated and automatic speech recognition (ASR) based
transcriptions. Unfortunately, complete ASR based transcrip-
tions were not available for all meetings in AMI and ICSI
corpus. The meetings which did not include ASR transcrip-
tions were then excluded. These meetings can be found from
Table 1. As a result, the number of remaining meetings is 237
consisting of 163 AMI and 74 ICSI meetings.

Each meeting in the meeting corpus is transformed into
a sequence of overlapping frames S = {s1, ..., sN}, where
frames si have a duration of 2s and are extracted every 0.5s.
Before this framing operation, all non-speech segments are
removed according to the reference transcriptions.

The choices of frame and overlap duration are based on
several factors. Firstly, it is necessary that a frame is long
enough so that proper modeling of the speaker corresponding
to the frame is possible. Secondly, the frame has to be a short
enough so that spontaneous speaker changes would not go
unnoticed. As a result, a duration of 2 seconds was chosen,
which has also been used in [9, 14].

Relatively large overlapping in turn is beneficial for the
clustering procedure as it enables more samples for forming
the clusters. However, an increase in overlap duration also re-
sults in a increase in computing time as the number of frames
in S increases. Preliminary experiments illustrated that an
overlap duration of 1.5 seconds would then be a suitable com-
promise.

Since speaker turns change unpredictably in sponta-
neous discussion, each two-second frame can include speech
from multiple different speakers. That is, in general, each
speaker speaks for only some percentage of the frame’s du-
ration. For each frame s, we compute a quantity we call
homogeneity percentage H%. It is the highest percentage of
frame time covered by a single speaker. The frame’s speaker
label l is this most prominent speaker. Equivalently,

l = argmax
i

|Ti|, H% =
maxi |Ti 6=−1|

|T | ∗ 100%, (1)

where T = {T−1, T1, ..., Tns
} is a set of transcription labels

of s with T−1 corresponding to samples which include over-
lapping speech and Ti 6=−1 depicting samples which are as-
signed to a speaker i.

Table 1. Removed meetings.

AMI EN2001a, EN2001e, EN2002c, EN2003a, EN2006a
EN2006b, IB4005, IS1003b

ICSI Bmr012

The speaker corpora comprise of four different partitions,
LS1000 andLS2000 which are collected from Librispeech cor-
pus and V C1000 and V C2000 which are extracted from the
Voxceleb2 dataset [3, 29]. The number of speakers in a par-
tition is given as the subscript. To the best of our knowledge,
the speakers in each partition are disjoint from the speakers
in the meeting corpus. The speech material of each partition
consists of frames of 2s duration which are extracted with-
out overlap. The sampling frequency is the same as with the
meeting corpus. In the extraction procedure, we use the we-
bRTC speech activity detection (SAD) system [30], since ref-
erence transcriptions are not available. The gender distribu-
tions and the frame compositions are depicted in Table 2 and
3.

In order to balance the speaker label distributions with the
partitions with the same number of speakers, the maximum
number of frames per speaker is limited. The limit for the
partitions LS2000 and V C2000 is assigned as 670 whereas the
limit for LS1000 and V C1000 is 1000. The LS1000 partition,
however, did not include quite as much speech material as
V C1000, so the maximum number of frames per speaker is
only 764.

3. SPHEREDIAR

The block diagram of SphereDiar speaker diarization system
is presented in Figure 1. In this Figure, input S depicts a
sequence of 2s frames sampled with 16 kHz frequency and
the output L the corresponding speaker label sequence. Note
that we do not provide SAD in this system. This is by no

MeMAD – Methods for Managing Audiovisual Data
Deliverable 2.2

93



Table 2. Gender distribution in speaker corpora.

Number of females Number of males Total

LS1000 500 500 1000
LS2000 987 1013 2000
V C1000 500 500 1000
V C2000 731 1269 2000

Table 3. Frame compositions in speaker corpora.

Minimum Maximum Total number of
number of number of frames
frames frames
per speaker per speaker

LS1000 382 764 654 297
LS2000 341 670 1 204 967
V C1000 838 1000 995 443
V C2000 577 670 1 337 601

means a trivial exclusion since SAD is an essential compo-
nent in any speaker diarization system [1]. However, when
diarization systems are developed, reference SAD labels are
often used in order to focus on the actual speaker diarization
[17, 20, 21, 31]. This is also the case with the speaker diariza-
tion systems against which we compare our system in section
4.

S Feature extraction

Segmentation Speaker modeling

Clustering

L

Fig. 1. Block diagram of SphereDiar.

Feature extraction. In the beginning of the diarization pro-
cedure, each frame s in S is converted to x ∈ R201×59, which
consists of a sequence of 19 Mel-Frequency Cepstral Coeffi-
cients (MFCC), their first and second derivatives, and the first
and second derivatives of energy just as in [32]. MFCCs are
extracted every 10ms with a 25ms window duration using Li-
brosa [33] and normalized with zero mean and unit variance.
SphereSpeaker. In speaker modeling, each feature sequence
x is projected into a speaker embedding f(x). The projection
is attained by using the neural network depicted in Figure 2
and Table 4. This network is initially designed to predict a
class, or in our setting, a speaker identity for x. Consequently,
the final layer has a softmax activation function which assures
that the output is an Ns dimensional probability distribution,
where Ns is the number of classes. The speaker embedding

f is produced in this classification process as the output of
the last hidden layer. As a result, the final layer is only used
during the training.

The network consists of two main components: a cascade
of three bidirectional Long Short-Term Memory (LSTM)
neural networks with skip connections which adheres to the
architecture of [32] and an embedding layer. In this layer,
we assign two conditions on the embedding: f ∈ R1000 and
‖f‖2 = 1. The use of L2 normalization is influenced by
the work in [12, 16] whereas the embedding dimension and
the overall configuration of the embedding layer are based
on our preliminary experiments. The importance of the nor-
malization operation inside the network will be emphasized
further in the experiments section where we compare SS with
SS*. The latter is otherwise the same network as SS, but
does not include L2 normalization layer. Instead, the speaker
embeddings extracted with this network are L2 normalized
externally.

Table 4. Output dimensions of each layer in SphereSpeaker
and HBS neural networks.

SphereSpeaker neural network Output dimensions
Bidirectional LSTM1 201× 500
Bidirectional LSTM2 201× 500
Bidirectional LSTM3 201× 500
Concatenation 201× 1500
Embedding layer 1000
Fully connected layer (softmax) Ns
HBS neural network Output dimensions
Bidirectional LSTM 201× 600
Attention layer 201× 600
Average pooling layer 600
Fully connected layer (sigmoid) 1

x

Bidirectional LSTM

Bidirectional LSTM

Bidirectional LSTM

Concatenation

Embedding layer

Fully connected
(Softmax)

f(x)

Embedding layer

Batch normalization

Fully connected
(ReLU)

Average pooling
over time

Batch normalization

L2 normalization

Fig. 2. SphereSpeaker neural network.

Homogeneity Based Segmentation. Segmentation is per-
formed as a binary classification where the formulation of
classes is based on the concept of homogeneity percentage.
In this approach, our aim is to label each x as 0, if H% of the
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corresponding frame s of x exceeds a given threshold Hθ%

and otherwise as 1. As a result, we call this method Homo-
geneity Based Segmentation. Ideally, due to the definition of
the homogeneity percentage, class 1 consists of frames which
include speaker change boundaries and overlapping speech
whereas class 0 comprises of frames which can be assigned to
a single dominant speaker. Nevertheless, a gray area between
classes does exist when homogeneity percentages are close
to the threshold Hθ%. Moreover, there is no optimal thresh-
old: we set Hθ% = 65% in our experiments as we consider
it to be a suitable compromise. The ultimate goal of HBS is
to exclude the frames assigned to class 1 from the clustering
procedure. The main feature of the HBS is that in theory, it
allows performing both OSD and SCD in a single process.
Such simplification is yet to be proposed or experimented in
speaker diarization.

The class labels are predicted with the neural network il-
lustrated in Figure 3 and in Table 4. The two main com-
ponents of this network are the bidirectional LSTM neural
network which is motivated by the works in [9, 18, 19] and
the attention layer which is based on the implementation in
[34]. With the former, we use both regular and recurrent
dropout and assign both dropouts as 0.2. All other layers
are chosen based on our preliminary experiments. The class
h(x) ∈ {0, 1} of each x is determined based on rounding the
output of the network ĥ(x) ∈ [0, 1] to the nearest integer.

x

Bidirectional LSTM

Attention layer

Average pooling
over time

Batch normalization

Fully connected
(Sigmoid)

ĥ(x)

Attention layer

Transpose

Fully connected
(Softmax)

Transpose

×

Fig. 3. HBS neural network.

Top Two Silhouettes. After the speaker modeling and seg-
mentation we have obtained a sequence of speaker embed-
dings F and a sequence of HBS labels H . As a final step,
we assign each f in F with a speaker label. In our approach,
this assignment is determined by clustering E, a subset of F
consisting of embeddings fi with the HBS label hi = 0. The
clustering is performed with a novel algorithm which can be
divided into two steps: the proposal generation and the opti-
mal proposal determination.

In the first step, E is fitted with multiple different spheri-
cal K-means configurations with K ranging from 2 to Nmax.
Here, Nmax refers to an initial guess of a maximum number
of speakers in E. Each configuration is run with R differ-

ent initializations from which the final configuration is de-
termined based on the run which yielded the highest silhou-
ette score. This score is the average of silhouette coefficients
which are computed for each speaker embedding. In this
computation, cosine similarity is used as a distance metric.
More details of the calculation of the coefficients can be found
in [26]. The proposals Pi are then created based on these final
configurations.

In the second step, the optimal proposal Popt is chosen.
First, the proposals corresponding to the two largest silhouette
scores, Ptop−1 and Ptop−2 are recovered. If (i) Ptop−1 has
more clusters, or (ii) the silhouette score of Ptop−2 is below
a threshold δ, then Popt = Ptop−1. This is a heuristic rule
which we have found experimentally and can be interpreted
as a further confidence that Ptop−1 is the optimal proposal.

Otherwise, if both (i) and (ii) are unsatisfied, the algo-
rithm deduces that Ptop−2 could also be chosen. As Ptop−2
has then more clusters than Ptop−1, the algorithm investigates
if any of the clusters in Ptop−1 might contain inner clusters.
This investigation is performed in a similar fashion as in the
first step but for each each cluster in Ptop−1. The assign-
ment Popt = Ptop−2 is then chosen if for any initialization
or cluster, both maximum silhouette value is above δ and a
corresponding K ∈ {2, 3}. In this condition, the maximum
number of inner clusters is restricted to 3 since a higher num-
ber would be highly improbable. However, if this condition is
not satisfied the algorithm again chooses Popt = Ptop−1.

Algorithm 1: Top Two Silhouettes
Input: Set of speaker embeddings E, a number of
initializations R, a maximum number of speakers
Nmax and a threshold δ
Output: Proposal P = {L,C}.
Steps:

1. Initialize K = {2, ..., Nmax} and
s = {0, ..., 0} , |s| = |K|

2. for r = 1 to R do
for i = 1 to |K| do
φ(Ki, E)→ Li → υ(Li, E)→ ŝi
if (ŝi > si)→ si = ŝi.

3. Find largest and second largest silhouette
scores stop−1 and stop−2, respectively.
If not top-2 > top-1 ∧stop−2 > δ)
→ return Ltop−1, Ctop−1

4. Repeat step 2 for each Ej ∈ E =
{fi | li = k ∈ Ltop−1} In the process, for
any j, r:
If (maxi υ(Lij , Ej) > δ ∧Ki ∈ {2, 3})
→ return Ltop−2, Ctop−2

5. return Ltop−1, Ctop−1.
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The labels L for F are then generated using associated
cluster centers Copt of Popt. As the proposals corresponding
to the two largest silhouette scores are central to the algo-
rithm, we have named it Top Two Silhouettes. In the exper-
iments section, we demonstrate the validity of this algorithm
by comparing it with Top Silhouette (TopS), which is essen-
tially the same as Top2S but always assigns Popt = Ptop−1.

Top Two Silhouettes is described more formally in Algo-
rithm 1. In this description, spherical K-means is denoted
with φ and the calculation of the silhouette score with a vari-
able υ. Moreover, instead of two steps, the description con-
sists of three main steps consisting of the calculation of the
silhouette scores, the evaluation of the conditions (i) and (ii)
and the possible inner cluster search.

4. EXPERIMENTS

4.1. Experimental setup

Evaluation metric. All experiments are conducted using the
same evaluation metric called diarization error rate (DER) [1].
In general, DER consists of SAD related errors (false alarm
and false rejection) and speaker errors which, in our case,
can be interpreted as a clustering errors between reference
and predicted speaker labels [1]. However, since we have
performed SAD on all meetings in the meeting corpus as a
preprocessing step, the computation of DER simplifies to a
calculation of the speaker error which we compute with Hun-
garian algorithm [35]. Furthermore, when calculating DER,
we consider only labels corresponding to the frames which
have H% above the threshold Hθ% = 65% unless explicitly
mentioned otherwise.

Neural network training and evaluation. We train 10 mod-
els in total: 8 for speaker modeling and 2 to be used for seg-
mentation. The first eight models are trained using SS and
SS* and four different training and evaluation set splits. The
splits are generated from each partition in the speaker corpora
by choosing randomly 45 frames from each speaker for test-
ing and leaving the rest for training.

The last two models both use HBS neural network, but
are trained solely using the meeting corpus with two differ-
ent evaluation sets: AMIeval which is a same as in [21] or
ICSIeval consisting of 9 ICSI meetings 1. In both cases, all
other meetings in the meeting corpus are reserved for training.
Moreover, only frames which have H% = 100% (labeled as
0) and frames withH% ≤ 65% (labeled as 1) are used in train-
ing and evaluation. This choice is based on ensuring proper
discrimination between classes that we found beneficial in our
preliminary experiments.

All 10 models are trained using Keras deep learning li-
brary [36]with batch size 256, for 45 epochs. We use the
cross entropy as a loss function and using Adam [37] opti-
mizer. When training the last two models, we also weight
class 1 twice as much as class 0 in order to balance the class

distributions.
Clustering parameters. We assign R = 50 and Nmax = 11
in all experiments. We choose to set R this high since spheri-
cal K-means has a tendency to converge to a local maximum
[25]. The value of Nmax is selected to exceed the highest
possible participant number, 9, of the meetings in the meet-
ing corpus. In addition, we set δ = 0.1, which we attained
by conducting a grid search on a clustering development set
Clustdev of 12 meetings extracted from the meeting corpus1.
This set is disjoint with both AMIeval and ICSIeval. In
the grid search, we evaluated each threshold using DER, did
not use HBS and performed speaker modeling with Sphere-
Speaker trained with V C1000.

4.2. Results

Fig. 4. Average DER over 225 meetings from the meeting
corpus with different SphereDiar configurations which omit
HBS.

In Figure 4, we visualize speaker diarization results with
225 meetings from the meeting corpus that are disjoint
with Clustdev. These results are obtained using all possi-
ble SphereDiar configurations introduced in this paper but
without using HBS (hi = 0,∀i) as most of the meetings
have been used in HBS training. The results illustrate that
SS outperforms SS*, especially when these neural networks
are trained with Voxceleb2 partitions, and that Top2S per-
forms markedly better than TopS. Moreover, the results show
that both the increase in the number of training speakers and
the use of Voxceleb2 partitions over Librispeech partitions
are preferable in speaker modeling training. The best con-
figuration is attained by combining SS trained with V C2000

and Top2S and it achieves 3% average DER over the 225
meetings.

The results in Table 5 show that our HBS system fails
to benefit the speaker diarization task. In the experiments
which were briefly discussed with neural network training and
evaluation, the HBS system achieved mean average precision
of 0.953 with AMIeval and 0.935 with ICSIeval. Clearly,
these scores were not high enough to make HBS beneficial
for speaker diarization.
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Table 5. Average DER (%) over different evaluation sets and
HBS setups with the best SphereDiar configuration.

Segmentation AMIeval ICSIeval 225 meetings
- 2.4 2.9 3.0
HBS 3.5 4.8 -
Optimal HBS 2.0 2.5 2.8

However, the results also depict that even when using op-
timal HBS, which assigns hi based on reference HBS labels,
no significant improvement for the task is attained. This re-
mark is especially distinct when the evaluation set consists of
all of the 225 meetings. Interestingly, these results imply that
our system is neither too dependent on OSD or SCD which
have been previously shown to be important factors in speaker
diarization [1, 4]. We hypothesize that this outcome is due
to two reasons: a good generalization ability of the speaker
embeddings and relatively low significance of HBS for the
Top2S algorithm. Especially the latter can be emphasized,
since HBS labels are only utilized to exclude the embeddings
from the clustering procedure but not in any other manner.
For example, the labels could have also been used in the ini-
tialization of spherical K-means. Nevertheless, based on the
results in Table 5 we can deduce that SphereDiar achieves
good results even without OSD or SCD.

Table 6. Average DER (%) comparison.

Test set Previous best Ours (Hθ% = 55%)
AMIeval 4.8 [21] 3.6
ICSI subset 13.1 [38] 4.5

In Table 6, a comparison between the best SphereDiar
configuration and two other speaker diarization systems
which have obtained top scores on AMI and ICSI subsets
in the literature is provided. These systems include a state-
of-the-art i-vector based speaker diarization system [21] and
the ICSI RT07s speaker diarization system, which uses both
MFCCs and deep learning based features [38, 39]. The av-
erage DER for both systems has been calculated from the
segments which do not include overlapping speech and by
using a forgiveness collar around speaker change boundaries
[21, 38]. With [38], this collar is ±0.25 seconds, whereas
[21] uses the collar of ±0.5 seconds. As was mentioned,
the DER scores for both systems have been attained using
reference SAD labels.

The computation of DER for SphereDiar is based on us-
ing the frames which have homogeneity percentages above
the threshold Hθ% = 55%. Due to the formulation of the
percentage, this means that virtually all overlapping speech is
removed from the DER calculation. Furthermore, decreasing
the Hθ% from 65%, which was used previously, to 55%, can
be interpreted as shrinking the collar around speaker change

boundaries. This decrease allows the average DER compar-
ison to be as fair as possible since any further decrease in
the value of Hθ% results in severe difficulties of labeling the
frames accurately. Consider, for instance, the example given
in subsection 2.1.5. If a frame would have H% = 50%, and
would contain two speakers without any overlapping speech.
Then, the speaker label of this frame could not be determined.

The results illustrate that our system is able to outperform
the systems in [21, 38]. Our result is particularly better when
comparing to [38] but we admit that our system has been
trained with Voxceleb2 which was not available at the time
for [38]. However, the system in [21] has been trained with
a very similar data as ours, using Voxceleb [2] and other rel-
evant datasets, but our result is still better. Moreover, as we
do not use HBS in the comparison, our domain adaptation is
only based on 12 meetings in Clustdev . This is significantly
less than used in either [21] or [38] and further emphasizes
the generality of our system.

5. CONCLUSIONS

This paper proposed a novel speaker diarization system
SphereDiar. The system includes two neural networks and
one clustering algoritm: SphereSpeaker neural network for
speaker embedding extraction, HBS neural network for seg-
mentation and Top Two Silhouettes for clustering. In our
experiments, we focused on evaluating the system with 225
meetings and illustrated that the system could be simplified
by excluding HBS. Using the best system configuration, we
achieved average DER over the meetings as 3%. We com-
pared our system with two state-of-the-art speaker diarization
systems and showed that the results obtained with our system
were better.

Nevertheless, the system still suffers from deficiencies.
Firstly, the dimension of the speaker embeddings is relatively
large which slows clustering. Secondly, Top2S does not yet
have any proper theoretical foundation. Furthermore, this al-
gorithm is also not very suitable for situations were only few
frames for each speaker can be attained. Finally, we have not
presented any methods for SAD. In future work, we would
like to address each of these shortcomings.
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B.8 EURECOM’s paper in AI4TV 2019 workshop [7]

This paper describes EURECOM experiments in video captioning using spatio-temporal atten-
tion. It has been published in the AI4TV 2019 workshop.
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ABSTRACT
Automatic video captioning can be used to enrich TV programs
with textual informations on scenes. These informations can be
useful for visually impaired people, but can also be used to enhance
indexing and research of TV records. Video captioning can be seen
as being more challenging than image captioning. In both cases,
we have to tackle a challenging task where a visual object has to
be analyzed, and translated into a textual description in natural
language. However, analyzing videos requires not only to parse
still images, but also to draw correspondences through time. Re-
cent works in video captioning have intended to deal with these
issues by separating spatial and temporal analysis of videos. In this
paper, we propose a Learned Spatio-Temporal Adaptive Pooling (L-
STAP) method that combines spatial and temporal analysis. More
specifically, we first process a video frame-by-frame through a Con-
volutional Neural Network. Then, instead of applying an average
pooling operation to reduce dimensionality, we apply our L-STAP,
which attends to specific regions in a given frame based on what
appeared in previous frames. Experiments on MSVD and MSR-VTT
datasets show that our method outperforms state-of-the-art meth-
ods on the video captioning task in terms of several evaluation
metrics.
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1 INTRODUCTION
Automatic video captioning can be used to enrich TV programswith
textual informations on scenes. These informations can be useful for
visually impaired people, but can also be used to enhance indexing
and research of TV records. The video captioning task consists in
automatically generating short textual descriptions for videos. It is
a challenging multimedia task as it requires to grasp all information
contained in a video, such as objects, persons, context, actions,
location, and to translate this information into text. This task can
be compared to a translation task: except instead of translating a
sequence of words in a source language into a sequence of words
in a target language, the aim is to translate a sequence of frames
into a sequence of words. Therefore, most of recent works in video
captioning rely on the encoder-decoder framework proposed in [25],
initially for text translation. In video captioning, the encoder aims at
deriving a video representation. Recent advances in deep learning
have shown to fit very well to that task. In particular, Convolutional
Neural Networks (CNNs) have proved to give excellent results
in producing highly descriptive image representations or video
representations. The decoder part aims at generating a sentence
based on the representation produced by the encoder. Long Short-
Term Units (LSTMs) [12] and Gated Recurrent Units (GRUs) [5]
are usually chosen for that task. Image captioning [30] and video
captioning can seem to be similar tasks, as both of them require
to "translate" a visual object into a textual one. However, video
captioning poses a problem that makes it more challenging than
image captioning: it requires to take into account temporality.

In [18], authors showed that for text translation tasks based
on the encoder-decoder framework, results could be improved if
the decoder attended to hidden states of the encoder based on its
hidden states. Some other works showed that the same attention
mechanisms could be applied to video captioning [10, 31, 38, 39].
The improvement induced by that attention mechanism can be
interpreted as follows: when the decoder is predicting the next
word of a sentence, it attends to relevant frames to perform that
task accurately. Some other works have also shown that attending
to relevant regions in a video during the encoding phase could
lead to better representations of videos, and thus better results
[32, 40]. However these works attend to local regions based on
frame-level considerations, without taking into account previous
frames. In our work, we aim at attending to relevant regions of a
video based on previous frames, because the relevance of objects,
persons or actions relies on the context in which they appear;
and that context should be inferred from previous frames. More
precisely, after deriving frame-level local features using the last
convolutional layer of a ResNet-152 [11], we do not apply an average
pooling to pool these local features. We process them by Learned
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Figure 1: Overview of our L-STAP method. Frame-level lo-
cal features are derived using a ResNet-152. Then, an LSTM
processes these local features, and updates its hidden state
by attending to them based on previous frames. The result
is that space and time are jointly taken into account to build
video representations.

Spatio-Temporal Adaptive Pooling (L-STAP). L-STAP attends to
specific regions of a frame based on what occurred previously in
the video. Our pooling method is learned because it is based on an
LSTM whose parameters are learned. It is spatio-temporal because
it takes into account space and time in a joint fashion. In addition,
it is adaptive because the attention paid to local regions is based
on previous hidden states of the LSTM; pooling depends not only
on the processed frame but also on previous ones. A high-level
schematic view of our proposed model is depicted in Figure 1.

We evaluated our results on two common datasets used for bench-
marking video captioning tasks: MSVD [4] and MSR-VTT [36].
Results show that our model based on L-STAP outperforms state-
of-the-art models in terms of several metrics. An ablation study
also shows that our method leads to significant improvements with
respect to state-of-the-art methods.

Our contributions can be summarized as follows: we propose a
novel pooling method for video processing, which we evaluate on
the video captioning task, even though it could be applied to any
other task involving video processing, such as video classification.
Moreover, we demonstrate the interest of our pooling method over
usual approaches. The paper is organized as follows. In Section
2, we introduce previous works on video captioning. In Section 3,
we present our model based on L-STAP. Section 4 is dedicated to
experiments. We conclude the paper in Section 5.

2 RELATEDWORK
Video captioning can be seen as a translation task: a sequence
of frames, which can be compared to a sequence of words in a
source language, have to be translated in a target language. Some
pioneering works such as [23] make use of Statistical Machine

Translation techniques to generate captions from videos. However
nowadays, most of recent works on video captioning rely on Deep
Learning techniques, and more particularly on the encoder-decoder
framework that has been developed in [25] for text translation [8].
Moreover, attending to the hidden states of the encoder during
the decoding phase has shown to give significant improvements in
Neural Machine Translation [18], which have been confirmed in
by [38] in the context of video captioning.

In some works, videos are split into frames, global features are
derived for each frame using a CNN [11, 13, 24, 26], and the obtained
features vectors are sequentially processed by the encoder [10, 14,
17, 19, 31, 34]. The drawback in such approaches is that spatial
information is lost. In our approach, we aim at taking into account
this spatial information.

Other approaches take into account locality. However, these
approaches have some significant differences with our approach.
In [38], the authors separate their model into two parts: a usual
encoder-decoder based on global features of frames, and a 3D-CNN
that derives a single representation for a whole video. The 3D-CNN
they employ does take into account locality, but it has two major
conceptual differences with respect to our method. First, it is based
on handcrafted features, which do not provide as much semantic
information as CNN features. Moreover, the pooling operations that
are used to get their video representations are neither learned nor
adaptive. In our approach, pooling takes into account the relevance
of local features in a frame with respect to previous frames. In [39],
authors use local features to trace semantic concepts along videos,
which is conceptually different from our approach, as we aim to
derive a video representation based on these local features. In [35],
authors propose another method to compute trajectories through
videos. In both papers, these trajectories are combined with global
features to build video representations. In [32], local features are
used to generate video representations. However, local features
from different spatial locations are not related together, contrary to
our work, which proposes to attend to local features based on all
local features from previous frames. Eventually, some other works
used 3D-CNN architectures [33] or convolutional RNNs [32] to
relate local features through time. However, due to the nature of
convolution operations, relations drawn through these methods
remain local: they are not able to spatially relate objects from the
video which are far from each other in a video for instance. Our
method, as we will show in the following, is build to grasp jointly
spatial and temporal information, by attending to relevant locations
of a frame with respect to previous ones.

3 PROPOSED MODEL
Let us first formulate the problem we are to deal with. Given a video
V , which is a sequence of T frames (v(1), ...,v(T )), our goal is to
derive a descriptive sentence Y = (y1, ...,yL). The approach that we
have followed is based on the encoder-decoder framework. The en-
coder first derives frame-level representations (x (1), ...,x (T )) = X ,
and then pool these representations together to form frame-level
video representations (h(1), ...,h(T )). Based on these representa-
tions, the decoder reconstructs a descriptive sentence in a recurrent
fashion. Figure 2 summarizes the important steps our model. In the
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Figure 2: Illustration of our model, based on the proposed L-STAP method. Frames are processed sequentially by a CNN (a
ResNet-152 in this case). However, instead of applying an average pooling on local features as some recent works do, we make
use of an LSTM to capture time dependencies. Local hidden states are computed to obtain a 7x7x1024-dimensional tensor.
These local hidden states are then pooled together (using average pooling or soft attention), and processed by an LSTMdecoder
to output a sentence.

following section, we will describe it in detail and report how we
train it.

3.1 Grasping Spatio-Temporal Dependencies
with L-STAP

As we stated above, the first step is to produce a representation of
the input video. In the following subsections, we will explain how
we derive frame-level features, and how we pool them together.

3.1.1 Image-Level Features. Given a video V = (v(1), ...,v(T )), we
need to derive features for each framev(t ). A common way to do so
is to process each frame using a CNN, which has been previously
pretrained on a large-scale dataset. In works such as [17], the out-
puts of the penultimate layer of a ResNet-152 have been chosen as
frames representations, which consist of 2048-dimensional vectors.
However, such representations discard locality, which results in
loss of information. Therefore, in this work, we choose to take
the output of the last convolutional layer of a ResNet-152. Thus,
we obtain frame-level representations (x (1), ...,x (T )) = X , where
x (t ) ∈ R7×7×2048 for all t . The next step is to process these dense
frame-level representations to derive compact frame-level represen-
tations, using the proposed L-STAP method instead of conventional
pooling.

3.1.2 How L-STAP Works. L-STAP aims at replacing the average
pooling operation after the last convolutional layer in a CNN, and
to pool local features according to previous frames. The goal is
to capture where important actions are occurring, and to discard
locations that are not relevant to summarize what is happening in
a video. For that purpose, we use an LSTM, taking local features as
inputs, resulting in local hidden states, which are then combined
in a way we will describe later in this subsection. More formally,

given local features x (t )i j ∈ R2048, the aggregated local features h(t )i j
are computed recursively as follows:

i
(t )
i j = σ (Wixx

(t )
i j +Wihh

(t−1)
+ bi ) (1)

f
(t )
i j = σ (Wf xx

(t )
i j +Wf hh

(t−1)
+ bf ) (2)

o
(t )
i j = σ (Woxx

(t )
i j +Wohh

(t−1)
+ bo ) (3)

c
(t )
i j = f

(t )
i j ◦ c(t−1) + i(t )i j tanh(Wcxx

(t )
i j +Wchh

(t−1)
+ bc ) (4)

h
(t )
i j = o

(t )
i j ◦ tanh(c(t )i j ) (5)

whereWix ,Wih , bi ,Wf x ,Wf h , bf ,Wox ,Woh , bo ,Wcx ,Wch and

bc are trainable parameters, and c(t−1) and h(t−1) are respectively
the memory cell and the hidden state of the LSTM. Please note
that memory cells and hidden states are shared for computing all
aggregated local features. The memory cell and the hidden state at
time t are computed as follows:

c(t ) =
7∑
i=1

7∑
j=1

α
(t )
i j c

(t )
i j (6)

h
(t )
=

7∑
i=1

7∑
j=1

α
(t )
i j h

(t )
i j (7)

where α (t )i j are local weights. In our work, we experimented with
two types of local weights. We first tried to use uniform weights:

α
(t )
i j =

1
7 × 7 (8)
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which actually correspond to an average pooling of aggregated
local features. The second solution that we tried was to derive local
weights using an attention mechanism, as follows:

α̃
(t )
i j = w

T tanh(Wαxx
(t )
i j +Wαhh

(t−1)
+ bα ). (9)

α
(t )
i j =

exp(α̃ (t )i j )∑7
k=1

∑7
l=1 exp(α̃

(t )
kl )
, (10)

whereWαx ,Wαh , bα are trainable parameters.

3.2 Encoding Videos
In our model, we encode videos using the L-STAP method we
presented previously. We initialized the memory cell and the hidden
state of the LSTM using the output of an I3D [3] (before the final
softmax) which had been trained on Kinetics-600 [3]. More formally,
if V is an input video:

c
(0)
i j = tanh(W e

c e(V ) + bec ) (11)

h
(0)
i j = tanh(W e

h e(V ) + beh ) (12)

whereW e
c , bec ,W e

h and beh are trainable parameters. The decoder

produces c(T ) andh(T ) as outputs, whereT is the length of the input
video. These outputs will be used to initialize the sentence decoder
that we will introduce in the next section.

3.3 Decoding Sentences
For decoding sentences, we chose to use an LSTM. In the following,
we assume that sentences Y are represented by sequences of one-
hot vectorsy1, ...,yL ∈ RN where N is the vocabulary size. The aim
of the LSTM is to compute the probabilities P(yl |yl−1, ...,y1,V ;θ )
for l ∈ {1, ...,L}, where θ is the set of all parameters in the encoder
and the decoder, and V an input video. In the following, we will
describe formally how we compute these probabilities.

We initialize the memory cell and the hidden state of the decoder
LSTM using the last memory cell and the last hidden state of the
decoder:

cd0 = c
(T ), (13)

hd0 = h
(T )
. (14)

It has been shown in [18] for text translation tasks that attend-
ing to hidden states of the encoder during the decoding phase
improved results. Some works in video captioning have followed
that approach successfully [37, 38]. We followed a similar approach
for our decoding phase. More precisely, at each step l , we compute
a weighted sum of hidden states of the encoder:

φ(h,hdl−1) =
T∑
t=1

β
(t )
l h

(t ) (15)

where β (1)l , ..., β (T )l are computed as follows:
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β tanh(Wβeh
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d
l−1 + bβ ), (16)
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k )
, (17)

whereWβe ,Wβh , bβ are trainable parameters. Assuming that the
word yl−1 has been decoded at step l −1, we aim to decode yl based
on yl−1 and φ(h,hdl−1). For that purpose, we first compute a word
embedding xdl :

wd
l =Wembyl−1, (18)

whereWemb is a learned embedding matrix. Then, we concatenate
wd
l and φ(h,hdl−1) to obtain and xdl :

xdl = [wd
l ;φ(h,hdl−1)] (19)

Eventually, we input xdl to the decoder LSTM:
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bdc are trainable parameters.
The last step is to infer a word yl . For that purpose, we derive ỹl

as follows:

ỹl = softmax(Wdh
d
l ) (25)

whereWd is a trainable parameter. We state that yl is the one-hot
vector corresponding to the maximum coordinate of ỹl .

3.4 Training
Assuming that y1, ...,yL correspond to ground-truth words, we aim
to minimize the following cross-entropy loss:

Ld (θ ) = −
L∑
l=1

log P(ỹl |yl−1, ...,y1,V ;θ ) (26)

where V is a video corresponding to the caption (y1, ...,yL).
In addition to that, some works have shown that regularizing

the cross-entropy loss with a matching loss between video encod-
ings and ground-truth sentences could improve results by bridging
the semantic gap between them [10, 17]. As reported in Section
4.4, such improvement has been noticed in our experiments. The
matching model we employed is described in the following. Let
us assume that Y = (y1, ...,yL) is a sentence corresponding to a
video V . First, we translate this sequence of one-hot vectors into a
sequence of word embeddings (xs1 , ...,xsL) using the matrixWemb
from Section 3.3. Then, we compute a sentence embeddingψ (Y ) by
processing this sequence of word embeddings into another LSTM:
each word embedding is entered sequentially as an input to that
LSTM, and ψ (Y ) is defined to be its last hidden state. We want
the initialization of the decoder to be as close as possible to an
accurate representation of its corresponding sentence. Therefore, if
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Figure 3: Overview of our training losses. The first train-
ing loss is the Cross-Entropy loss, which aims to make the
probability distribution of sentences in the training set and
the probability distribution of the inferred sentences match.
The second one is a ranking loss, aiming to bridge the se-
mantic gap between video representations and sentences.

φ(V ) = h
(T ) is the initial hidden state of the decoder, we will aim

to minimize the following ranking loss from [9]:

Lm (θ ) = max
V,V

(
max(0,α − S(φ(V ),ψ (Y )) + S(φ(V ),ψ (Y )))

)

+max
Y,Y

(
max(0,α − S(φ(V ),ψ (Y )) + S(φ(V ),ψ (Y )))

)
(27)

where V is a negative video sample, and Y is a negative sentence
sample coming from another video than V . The final loss is the
following:

L(θ ) = Ld (θ ) + λLm (θ ) (28)
where λ is a hyperparameter that we set to 0.4 according to results
on validation.

4 EXPERIMENTS
4.1 Datasets
We evaluated our models on two video captioning datasets: MSVD
[4] and MSR-VTT [36]. MSVD is a dataset composed of 1,970 videos
from YouTube, which have been annotated by Amazon Mechanical
Turks (AMT). Each video has approximately 40 captions in English.
We split that dataset following [29]: 1,200 videos for training, 100
videos for validation and 670 videos for testing. MSR-VTT is a
similar dataset, but with much more videos, and less captions per
video. It is composed of 10,000 videos, and 20 captions per video.
Following [36], we split that dataset into 6,513 videos for training,
497 videos for validation and 2,990 videos for testing.

For both datasets, we uniformly sampled 30 frames per video
as done in [40], and extracted features for each frame based on
the last convolutional layer of a ResNet-152 [11], which had been
trained on the image-text matching task on MSCOCO [16], after

pre-training on ImageNet-1000 [6] following [9]. In addition, we
extracted activity features for each video using an I3D pretrained on
Kinetics-600 [3]. For MSVD, we converted sentences to lowercase
and removed special characters, which lead to a vocabulary of
about 14k words. We converted each word into an integer, and cut
sentences after the thirtieth word if their lengths were higher than
thirty. The same approach for MSR-VTT lead to a much bigger
vocabulary size of about 29k words. Therefore, we kept only the
15k most common words, and replaced all the others by an <UNK>
token. We applied the same process otherwise.

4.2 Implementation Details
Our models have been implemented with the TensorFlow frame-
work [1]. We use 1024-dimensional LSTMs in both encoder and
decoder. Soft attention spaces are 256-dimensional. Word embed-
dings are 300-dimensional.

We trained our model using the RMSProp algorithm [27], with
decay = 0.9, momentum = 0.0 and epsilon = 1e-10. Batch size is
set to 64. Learning rate is 1e-4, and we apply gradient clipping to
a threshold of 5. Eventually, we apply dropout on the output of
the decoder (before the prediction layer) with a rate of 0.5 to avoid
overfitting.

4.3 Results on MSVD and MSR-VTT
We evaluated our models in terms of BLEU [20], ROUGE [15], ME-
TEOR [7] and CIDEr [28] scores, which are metrics commonly used
to evaluate automated captioning tasks. We compared them to the
following recent models for video captioning. Our results on MSVD
are presented in Table 1. Results on MSR-VTT are presented in
Table 2.

OnMSVD, it can be noticed that L-STAP achieves the best results
on six out of seven metrics. It is also relevant to mention that E2E
[14], which achieves better CIDEr results than our model, has been
trained using reinforcement learning techniques to be optimized
regarding that CIDEr metric. Works on image captioning and video
captioning have shown that significant improvements could be
done using such techniques [2, 22, 34], at the price of much longer
training times. We did not use reinforcement learning to train our
models, instead we use cross-entropy minimization which has the
advantage of being fast and simpler to implement.

Results on MSR-VTT show that our model outperforms mod-
els trained using a cross-entropy loss on two metrics out of four
(METEOR and ROUGE). HRL [34] obtains better results overall,
however it makes use of reinforcement learning techniques, which
leads to better results as stated in the previous paragraph.

We report some qualitative results of our model on MSR-VTT
in Figure 4. On the second video, the man who is singing appears
during a very limited amount of time. This shows that our model
has been able to attend to important frames to identify what the
main action of the video was. In the first video, a woman starts
talking about makeup, and then puts some lipstick on her lips. The
caption generated by our model shows that it has been able to
draw a relation between the first and the second parts of the video.
Moreover, the lipstick is applied on a very localized part of the
video frames: we can infer that our model could efficiently attend
to the right part of the frame to generate a caption. The fourth video
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Figure 4: Some qualitative results of L-STAP on MSR-VTT.
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Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE METEOR CIDEr
TSL [35] - - - 51.7 - 34.0 74.9
RecNet [31] - - - 52.3 69.8 34.1 80.3
mGRU [21] 82.5 72.2 63.3 53.8 - 34.5 81.2
AGHA [40] 83.1 73.0 64.3 55.1 - 35.3 83.3
SAM [32] - - - 54.0 - 35.3 87.4
E2E* [14] - - - 50.3 70.8 34.1 87.5
SibNet [17] - - - 54.2 71.7 34.8 88.2
L-STAP (Ours) 84.0 74.1 64.5 55.1 72.7 35.4 86.7

Table 1: Results on theMSVD dataset. The * signmeans that themodel is using reinforcement learning techniques to optimize
over the CIDEr metric. Best results are in bold characters.

Figure 5: Our second interpretation about the efficiency of
the second term of our loss function. Skip connections be-
tween video representations and ground-truth sentences im-
prove results.

shows that results could be improved by adding sound processing
to our model: it was not possible from the video only to know that
colors were said.

4.4 Ablation Study
Results of an ablation study on the MSVD dataset are reported in
Table 3. The encoder we used in our baseline model is an Long-term
Recurrent Convolutional Network (LRCN) [8]. As shown in pre-
vious works such as [10, 17], adding a component to the training
loss to make video representations match sentence representations
improves results. Two interpretations can be given to these results.
A first one is that adding a ranking loss to match video represen-
tations and sentence representations helps bridging the semantic
gap between these two modalities. A second one could be that

propagating the gradient across all the layers of the decoder could
make it vanish through depth. Thus, adding a matching loss to the
cross-entropy loss could be seen as a skip-connection between the
sentence to be generated and the video representation used by the
decoder. We illustrate that second interpretation in Figure 5.

Replacing the average pooling at the end of a CNN by our L-STAP
induces a major improvement with respect to all metrics as reported
in Table 3. On top of that, results shown in Table 1 demonstrate
that L-STAP leads to better results than other models based on local
features such as AGHA and SAM, and results shown in both Table
1 and Table 2 show the interest of L-STAP over average pooling.

We can notice in Table 3 that using a soft-attention mechanism to
pool local hidden states in the encoder does not provide significant
improvements over average pooling for all metrics except from
CIDEr. Our interpretation is that the LSTM of the encoder can learn
to attend to relevant local features by itself: before applying the
average pooling, attention has already been drawn quite efficiently.

5 CONCLUSION
Video captioning is a way for TV broadcasters to enhance user
experience, in particular regarding accessibility. In this paper, we
presented a novel Learned Spatio-Temporal Adaptive Pooling (L-
STAP) method for video captioning. It consists in taking into ac-
count spatial and temporal information jointly in a video to produce
good video representations. As we have shown, these video rep-
resentations can be successfully used to perform automated video
captioning. We demonstrated the quality of our models based on
L-STAP by comparing them with state-of-the-art models on MSVD
and MSR-VTT, which are two video captioning datasets. On top of
that, we assessed the interest of L-STAP through an ablation study.
Although this paper concentrates on video captioning we believe
that the proposed L-STAP method could be also applied to other
video-related tasks such as video classification.
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B.9 AALTO’s paper in MULEA ’19 workshop [8]

This paper describes the development of dense image captioning techniques at AALTO that
may later have influence on the work in MeMAD. It has been published in the MULEA ’19
workshop.
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ABSTRACT
Dense captioning (DC), which provides a comprehensive context
understanding of images by describing all salient visual groundings
in an image, facilitates multimodal understanding and learning.
As an extension of image captioning, DC is developed to discover
richer sets of visual contents and to generate captions of wider
diversity and increased details. The state-of-the-art models of DC
consist of three stages: (1) region proposals, (2) region classification,
and (3) caption generation for each proposal. They are typically
built upon the following ideas: (a) guiding the caption generation
with image-level features as the context cues along with regional
features and (b) refining locations of region proposals with cap-
tion information. In this work, we propose (a) a joint visual-textual
criterion exploited by the region classifier that further improves
both region detection and caption accuracy, and (b) a Geometry-
aware Relational Exemplar attention (GREatt) mechanism to relate
region proposals. The former helps the model learn a region classi-
fier by effectively exploiting both visual groundings and caption
descriptions. Rather than treating each region proposal in isolation,
the latter relates regions in complementary relations, i.e. contextu-
ally dependent, visually supported and geometry relations, to enrich
context information in regional representations. We conduct an
extensive set of experiments and demonstrate that our proposed
model improves the state-of-the-art by at least +5.3% in terms of
the mean average precision on the Visual Genome dataset.

CCS CONCEPTS
• Computing methodologies → Scene understanding.
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dense captioning, attention, relationship modeling
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1 INTRODUCTION
Advancements in computer vision applications, such as object de-
tection and segmentation, have laid a strong foundation of com-
prehensive context understanding in images. Besides learning on
visual domain, tasks such as image captioning (IC) [3, 7, 24] and
visual question answering (VQA) [1] are the iconic examples that
connect vision and language modalities to not only provide better
visual reasoning, but also enable multimodal context understanding.
The IC task is to generate a human understandable sentence from a
given image. Such a sentence should be grammatically correct, ade-
quately expressive, and capture holistic view of the image content.
The VQA task is to generate a sentence to answer a given question
targeting at an image. While such a multimodal model (e.g. an IC
model) is able to describe an image, it continues to express varying
image contents with a sentence that can hardly capture multiple
perspectives of the image content.

To extend the capability of a captioning model, Johnson et al.
introduced the Dense Captioning (DC) task where the aim is to
describe as many as possible regions of interest (RoIs) in an image
[9]. More specifically, DC comprises two joint tasks: (a) localizing
the RoIs (e.g. by bounding boxes) and (b) generating a sentence
describing each grounded region. These tasks introduce two more
challenges to image captioning: (1) detecting and proposing mean-
ingful ROIs for captions and (2) understanding the relations between
the region proposals. For example, in Figure 1, two visual ground-
ings surrounding the man are closely related in visual contents and
captions. Besides, the larger RoI surrounding the whole body of the
man provides the most informative context for the smaller RoI cap-
tioned with "blue jeans of man". This indicates that the captioning
process can benefit from a DC model that is capable of capturing
relationships between regions.

We address the aforementioned challenges by (1) introducing a
joint visual-textual criterion for detecting RoIs and (2) proposing a
Geometry-aware Relational Exemplar attention (GREatt) module
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Figure 1: An instance in the Visual Genome dataset [11]
that reveals how the visual and caption information from
other regions can be particularly informative to some re-
gions. Here, the informative context for region captioned
with blue jeans of man is the region captioned with man
playing guitar on street, which is cued by the street area cap-
tioned with leaves scattered on sidewalk and street.

for capturing relations between the RoIs. Utilizing the caption em-
bedding along with the visual representations enforces the model
to learn a better alignment between the visual content and the
corresponding captions by projecting them into a shared subspace.
Simultaneously, the optimality of the proposed RoIs is improved.
GREatt accounts for three intrinsically distinct types of region-
level relationships, including (a) spatially correlated, (b) contextually
dependent, and (c) visually similar and supported relations. The
spatially correlated relation considers regions that are correlated
by their locations and sizes. The contextually dependent relation
considers if a region provides contextual information for another
region. The visually similar and supported relation focuses on visu-
ally similar contexts to enhance the evidence of the existence of a
specific context.

To summarize, our contributions are (1) a new geometry-aware
relational exemplar attention module and (2) a joint visual-textual
region classification criteria. which together lead to a new state-of-
the-art in the dense captioning task.

2 RELATEDWORK
2.1 Image Captioning
Understanding image captioning is essential because it is the funda-
mental building block of any captioning pipeline. We, thus, briefly
overview some of the most relevant works and refer the readers
to [7] for further reading.

The classical image captioning methods such as [3] relied on
linking a sentence to an image via feature mapping and were limited
to retrieving a pre-existing sentence from a corpus of sentences.
The techniques which utilize a language model, however, show
more flexibility in generating a sentence from a feature vector
representing the image. The most successful of such methods are
neural-based techniques [10, 16, 21]. Many of the recent image
captioning pipelines follow a similar path.

The most relevant works to us are, in particular, the attention-
based image captioning methods. For example [24] defined a soft-
attention mechanism (also known as top-down attention) that

learns to align the visual features with textual features dynamically
over time while generating a sentence. Pedersoli et al. [13] extended
the same idea by employing geometrical transformations to the
regions used for captioning. The top-down attention mechanism
often loses its effectiveness after the visual features are fine-tuned
for the captioning task [13]. In contrast to the top-down mecha-
nism, R. Tavakoli et al. [18] investigated the bottom-up attention
mechanism. While they demonstrated that bottom-up attention
cannot help much improving the caption qualities, they showed
such a mechanism enhances the robustness of captioning models.
Recently, He et al. [6] proposed an effective approach for combining
both bottom-up and top-down attention.

Our proposed approach follows a similar path to attention-based
image captioning, specifically using top-down attention. Neverthe-
less, we focus on dense captioning and try to encode the relations
between regions for building powerful context features.

2.2 Dense Captioning
Dense captioning was introduced along with the Visual Genome
dataset [11], which aims to promote vision and language research in
conjunctions with a range of perceptual reasoning and question an-
swering tasks. The dataset provides 5.4 million region annotations
with bounding boxes and captions for 108,077 images, averaging ~50
annotations per image.

The first dense captioning model was introduced by the pio-
neering work of Johnson et al. [9]. Their framework consists of
three components: (1) an image feature extractor (e.g. implemented
by a VGG net [17]), (2) a region detector, and (3) a caption gener-
ator. Given an image, it first projects the image into the feature
space. Then, it detects a series of RoIs using the region proposal
mechanism. Finally, each RoI is described with a sentence using
the caption generator language model based on recurrent neural
networks (RNN) [12] and image features corresponding to that
RoI. They tested their model on Visual Genome version 1 [11] and
established the first baseline for this task.

Yang et al. [26] extended the idea by replacing the localization
layer with Faster-RCNN [14], using captions for improving the
localization of region proposals generated by Faster-RCNN, and
exploiting both regional and image-level features for the language
model. They demonstrated that each of these modifications and
their combinations significantly improve the dense captioning.

Nevertheless, image-level features as context can mislead the
caption generator towards describing the global context rather than
the region of interest [26]. In contrast, our proposed GREatt mech-
anism learns the context features from the proposed regions by
considering distinct types of pairwise relationships between the
RoIs. Hence, our pipeline uses features which are more contextu-
ally dependent yet region-specific and improve caption quality. In
addition, to further capitalize on the idea of engaging captions in
the proposal process, we propose a region classifier (which deter-
mines the likelihood of a proposal being a genuine RoI) learned
on a subspace shared by textual features and their visual counter-
parts. Developing these two novel designs on top of the pipeline
proposed in [26] further enhances the performance in both region
classification and caption generation.
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2.3 Attention and Relation Reasoning
Reasoning about the relation of two feature vectors which represent
objects, entities, and elements with neural networks has gained
a recent interest and has been a core module in wide range of
applications, such as image captioning [27], object detection [8], and
visual question answering (VQA) [15], and scene graph generation
(SGG) [23, 25].

Many existing works have proposed different means to associate
two feature vectors (e.g. vi and vj ) and capture their mutual impor-
tance as αi, j . Introducing the notion of importance, one can link
relation reasoning to attention and interpret αi, j as a quantity of
how much one should also pay attention to vj during inference
about vi given a task. The most notable work for our purpose in
this annals is transformer networks [19] (originally for natural lan-
guage processing (NLP) tasks) in which the attention weights are
defined by the function of scaled dot-product (SDP) between vi and
vj , emphasizing similarity of representations.

In the context of object detection, Hu et al. [8] proposed a revised
SDP attention, which additionally considers the geometry relation-
ship between object proposals, allowing them to be refined and
classified jointly rather than in isolation. Yao et al. [27] constructed
a directed graph over the object proposals, in which each node of
the graph is represented by the visual features of the proposals, in
order to do image captioning. The refined object-level represen-
tation which embeds with the graph structure is then calculated
through graph convolutional networks (GCN). Yang et al. [25] cap-
italized on a similar idea to relate the region proposals for scene
graph generation.

Two other relevant ideas are graph attention networks [20] and
Neural Turing Machine [4]. The first one was originally proposed
for the graph classification task, and in it two features interact
through concatenation followed by a multi-layer perceptron (MLP).
The second one extends the same line of research with external
memory modules and employs the cosine similarity function to
capture the interaction between entities.

Even though many works have proposed different attention
mechanisms for the downstream tasks, most of them learn the
attention embodied by single relation (e.g. by SDP attention [8, 19]).
What remains less studied is can multiple attentions formulated
in different computational forms benefit each other for a given
computer vision task. This work addresses 1) do different attention
mechanisms work better in isolation? and 2) are they complementary
to each other? By examining and exploiting the complementary
relations captured by visual and geometry features, we propose a
novel attention mechanism built upon distinct types of relations
which improve the dense captioning task.

3 METHOD
In this section, we describe the problem formulation, our proposed
architecture and each component in the pipeline. The code is pub-
licly available at https://github.com/aalto-cbir/greatt_densecap.

3.1 Problem Formulation
We devise the dense captioning problem to consist of four sub-tasks:
1) region proposal (RP), 2) region classification (RC), 3) proposal
refinement (PR), and 4) region caption generation (CG). Region

proposal firstly generates a set of region proposals which are then
classified by a region classifier. The locations of region proposals
are refined gradually as the caption generation process proceeds.
The objectives of each task are formulated as follows:

Region proposal (RP). Region proposal is to learn to generate a
set of proposals B̂ = {B̂i }Nr

i=1 that well match to the ground-truth
proposals B = {Bi }Ni=1, where Nr is the number of the generated
proposals and N is the number of proposals in an image. Each
proposal is characterized by a rigid box, defined by its center co-
ordinate, width and height. Note that, here we use N and Nr for
notational simplicity, though they may be different for each image.

Region classification (RC). Region classification decideswhether a
region proposal is good enough to be captioned or should be ignored.
We classify the regions by additionally conditioning them on the
captions Ŝ = {Ŝi }Nr

i=1 (which are generated by the model learned
on the ground-truth captions S = {Si }Ni=1) and the relationships
between proposals. For an image I we build a directed graph G =
(V, E) over the representations of Nr proposed regions, denoted
by V = {vi , bi }Nr

i=1, where vi refers to the visual representation
and bi to the geometry representation, which are defined later in
Sec. 3.3. The edges E correspond to the relationships. We, thus,
minimize

Ecls = −
∑
i
log P(ci |B̂i , Ŝi ,G), (1)

where Ecls is the energy function for region classification and ci
indicates the class label, i.e. captioned (ci = 1) or non-captioned
(ci = 0) region.

Proposal refinement (PR). We further refine the proposed regions
by leveraging the caption information, akin to [26]. That is, we
minimize the following energy function:

Ebox =
∑
i ∈pos

Eboxi (∆B̂i |B̂i , Ŝi ), (2)

where ∆B̂i is the offsets to the proposal B̂i estimated in the region
proposal task and pos denotes the set of positive proposals.

Region caption generation (CG). To generate a caption for each
region, we consider the relation graph G to minimize

Ecap =
∑
i ∈pos

E
cap
i (Si |G). (3)

3.2 Overview of the Framework
Figure 2 depicts a high-level sketch of the proposed framework for
dense captioning. The input image is first processed by a region
proposal network (RPN) [14] to attain proposals from which the
regional visual representations {vi }Nr

i=1 are extracted. A graph G,
whose edge weights are calculated by GREatt, is constructed over
vi and employed to obtain a relational representation gi . Both vi
and gi are then fed into the captioning module to generate a caption
embedding. Finally, the caption embedding along with vi and gi
are used to classify the region as captioned or non-captioned class.
In the following subsections, we introduce the formation of gi and
describe the proposal refinement and caption nets in detail.
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Figure 2: The proposed framework divides the dense cap-
tioning problem into four sub-tasks tackled by four sub-
modules, i.e. a) region proposal network, b) region classi-
fier, c) proposal refinement net, and d) captioning net. It fea-
tures Geometry-aware Relational Exemplar attentionmech-
anism (GREatt), a relation module which is constructed on
different types of relationships among region proposals and
learns region-specific features which account for the most
relevant context in the image. In addition, the proposed re-
gion classifier is learned on relational features delivered by
GREatt and additionally on the caption information.

3.3 Geometry-aware Relational Exemplar
Attention

In this section, we discuss the construction of the graph struc-
ture between the proposed regions and demonstrate how one can
learn a powerful representation by considering the latent relation-
ships between the proposed regions. To this end, we propose the
Geometry-aware Relational Exemplar Attention (GREatt) module.

Having the region proposals B̂ and their representations V gen-
erated by the RPN, we aim to learn contextual representations
which are constructed on different types of relationships, namely,
visual relationships and geometry relationships. The visual relation-
ships account for the contextual dependency and visual similarity.
The geometry relationships explain the spatial correlation and ar-
rangement between any two region proposals (i.e. bounding boxes).

Given the individual regional features vi ∈ RDv , i = 1, ...,Nr ,
GREatt calculates the relational features gi by

gi = vi +
Nr∑
j=1

αi, jvj , ∀i, (4)

αi, j = fα (αдi, j ,αvi, j ,αωi, j ), (5)

where αi, j reflects how much vj should be associated with vi in
region classification and caption generation. fα (·) is GREatt con-
textual function (details provided in Sec. 3.3.4) that learns to embed
three different relationships into αi, j . These relationships are 1)
contextually dependent relation α

д
i, j , 2) visually similar relation

αvi, j , and 3) geometry relation αωi, j . The first two relations are based
on the visual representation and the third relation is based on the
geometry representation. In the following paragraphs, we describe
how α

д
i, j , α

v
i, j , and α

ω
i, j can be addressed computationally and dis-

cuss the possible options to implement fα .

3.3.1 Contextually Dependent Relations αдi, j . Used in [8, 22] for the
object detection task, and in [20] for aggregating representations in

graphical structures for graph classification, concatenating one rep-
resentation (e.g. vj ) to another (e.g. vi ) augments the information
that might be missing in vi , but can be provided by vj . Specifically,
we define αдi, j as

α
′д
i, j =W

д
α (v′i | | v′j ), v′i = tanh(W д

v vi ), (6)

α
д
i, j =

exp(α ′д
i, j )∑Nr

j=1 exp(α
′д
i, j )
, i = 1, ...,Nr , (7)

where | | denotes concatenation, tanh(·) is the hyperbolic tangent
activation function,W д

v ∈ RDw×Dv , andW д
α ∈ R1×2Dw . Concate-

nation is used to associate any two feature vectors, i.e. v′i and v
′
j to

learn how much importance vj has to vi throughW
д
α andW д

v . It is
worth noting that applying concatenation imposes a directedness
assumption on the link between any two regional features vi and
vj since, in general, αi, j , α j,i , when i , j.

3.3.2 Visually Similar Relations αvi, j . We introduce two visual rela-
tions based on dot-product and cosine distance. We categorize the
relation modules based on these two operations together because
they naturally capture the similarity between two representations
and can help enhance the visual signals by identifying other similar
ones.

Scaled Dot-Product: Firstly introduced in [19], scaled dot-product
(SDP) attention mechanism calculates αsi, j as

αsi, j =
(W s

v1vi ) · (W s
v2vj )√

Dw
, (8)

whereW s
v1 ,W

s
v2 ∈ RDw×Dv . What is worth noting is that αsi, j in

our framework is used to weight vi directly, whereas it is used to
weight another embedding projected from fi in [19].

Cosine Similarity: Eq. (8) learns the attention weights according
to the correlation ofW s

v1vi andW
s
v2vi measured by the dot-product.

Used for learning the attention weighting in Neural TuringMachine
[4], cosine similarity measures the angle between vectors:

αci, j =
(W s

v1vi ) · (W s
v2vj )

| |W s
v1vi | | · | |W s

v2vj | |
. (9)

We model the relational weight αvi, j , which is determined by visual
similarity between two vectors in Eq. (5), with either αsi, j or α

c
i, j ,

i.e.
αvi, j = γ

sαsi, j + γ
cαci, j , (10)

where γ s ,γ c ∈ {0, 1} are hyperparameters deciding either αsi, j or
αci, j to be adopted. This marks the difference between αvi, j and α

д
i, j

where the latter learns to identify dependent context with respect
to the representation vi .

3.3.3 Geometry Relations αωi, j . Relative geometry relation that en-
codes the spatial relationship between two proposals has shown to
be important when modeling contextual information [8, 27]. We
model it with αωi, j [8], where

αωi, j = f ω (W ω
2 σω (W ω

1 bi, j )), (11)

bi, j = [log( |xi − x j |
wi

), log( |yi − yj |
hi

), log(wi
w j

), log(hi
hj

)]T . (12)
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Figure 3: Architectures of (a) Yang et al. [26] and (b) our
proposed model. Both architectures consist of three RNN
branches which comprise the proposal refinement and cap-
tion nets. The proposedmodel is empowered by the features
learned with GREatt and a joint visual-textual region classi-
fier.

bi, j is the geometry features encoded by center coordinates (x∗, y∗),
width and height of the bounding box w∗, and h∗. Since xi − x j
or yi − yj can be zero, we set a lower bound (i.e. 10−3) on them.
f ω : R → R≥0 can be: 1) max(x , 10−3) similar to ReLU or 2) a
softmax operation. We empirically find that ωi, j tends to be rather
uniformly distributed when learning it with ReLU for any fixed i
and j = 1, ...,Nr . Hence, we adopt softmax in f ω throughout the
experiments.

3.3.4 Contextual Function fα . Before introducing how one can
define the contextual function fα in Eq. (5), we would like to em-
phasize the differences in three visual relationships, defined in
Eqs. (7)-(9). We hypothesize that the first scheme (i.e. concatenation-
based) learns how to identify the essential contextual cues with
respect to each proposal, while the latter two (similarity-based)
learn how to enhance the evidence on the existence of the similar
content to be recognized. This further leads to the assumption that
these two types of interactions in visual domain can potentially
provide distinct contextual information. With this hypothesis, we
write the contextual function fα as

fα (αдi, j ,αvi, j ,αωi, j ) =
αωi, j exp(γдα

д
i, j + α

v
i, j )∑Nr

j=1 α
ω
i, j exp(γдα

д
i, j + α

v
i, j )
, (13)

where γд is predefined hyperparameters. αωi, j , α
д
i, j α

v
i, j are defined

in Eqs. (11), (7), and (10), respectively. We empirically validate the
hypothesis by studying the quantities of the attentions (provided
in Figure 5) estimated from different schemes.

3.4 Proposal Refinement and Caption Nets
Yang et al. [26] proposed a triple-streamRNN architecture (shown in
Fig. 3(a)) for refining the proposals generated by the region proposal
network (RPN) [14] and generating the captions. We mainly follow

a similar architecture, i.e. the proposal refinement net RNNr
t , and

the caption nets composed by RNNvt and RNNд
t , t = 0, ...,T + 1,

where t indexes the RNN steps withT + 1 being the maximal length
of a caption including the start (<SOS>) and end (<END>) symbols.
At step t , each RNN∗

t receives a word predicted in step (t − 1) and
updates its hidden states h∗t ∈ RDr and cell states c∗t ∈ RDr .

The main difference between the proposed architecture and that
in [26] can be seen in Figure 3. While RNNr

0 and RNNv0 take vi
as input, RNNд

0 is fed with the context features gi learned with
GREatt instead of image-level features. The hidden state hrτ is used
to predict the offsets to the x andy coordinates, width and height of
the region proposals with a MLP, where τ is the step that predicts
(<END>). As for caption branches, hvt and h

д
t are concatenated to

make a prediction on the distribution of the next word through an-
other MLP. The proposed context features gi , adapted with respect
to each region, are endowed with contextual relationships captured
in the scene. By contrast, the image-level features devised by [26]
in Figure 3(a) can only provide a fixed and generic guidance to all
the regions to be captioned.

3.5 Joint Visual-Textual Region Classifier
Conventionally, the region classifier estimates P(ci |V) which indi-
cates that the prediction is purely conditioned on corresponding
regional features. In this work, we aim to improve the classifier by
replacing the target of estimation with P(ci |B̂i , Si ,G,V), as shown
in Eq. (1), which additionally considers the learned relationships
among the proposals and the caption information. Specifically, we
estimate P(ci |·) with

P(ci |I, B̂i ,Si ,G,V) = MLPrc (hi ), (14)

hi = gi +W
r (hvτ | |hдτ ). (15)

In the above equation, the relational representation gi is defined in
Eq. (4), ci is the class label defined in Eq. (1), MLPrc (·) represents a
MLP with a sigmoid activation function placed at the output, and
W r ∈ RDv×2Dr is learned to project the caption embedding to
the same domain in which the visual features reside. The rationale
behind this approach is two-fold:

1) Better vision-caption consistency: Projecting (or "trans-
lating") caption embedding back to the visual domain in which
the classification is performed can potentially improve the model’s
consistency between the generated caption embedding and the
embedding of the visual counterpart.

2)Mimicking human annotator’s behavior:We hypothesize
that two actions in the annotation process, i.e. 1) sizing up the
bounding boxes around the interesting contents and 2) caption-
ing, are bonded in both directions. A human annotator’s attention
may be drawn to a relatively salient object, caption it, and then
refine the bounding area and the caption. This indicates that the
caption information can as well provide evidence to infer the region
saliency.

3.6 The Losses
The proposed model is trained by minimizing the total loss L ad-
dressing all sub-tasks, i.e. the region proposal (RP), region classi-
fication (RC), proposal refinement (PR), and caption generation
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(CG) sub-tasks as presented in Sec. 3.1. Specifically,

L = LRP + LRC + LPR + LCG , (16)

LRP = α1L
RP
det + α2L

RP
box , (17)

LRC = β(LRCv + LRCд + LRCh ), (18)

LPR = γLPRbox , (19)

LCG = Lcap , (20)

where

LRPdet = αr

Nr∑
i=1

LRPdet,i , L
RP
box = αr

Nr∑
i=1

LRPbox,i , (21)

LRCv = αr

Nr∑
i=1

LRCv,i , L
RC
д = αr

Nr∑
i=1

LRCд,i , L
RC
h = αr

Nr∑
i=1

LRCh,i , (22)

LPRbox =
1

|pos|
∑
i ∈pos

LPRbox,i , L
cap =

1
|pos|

∑
i ∈pos

L
cap
i , (23)

αr =
1
Nr

is a normalization factor, pos represents the set of positive
regions in the batch of Nr regions, and |pos| denotes the size of
the set. α1, α2, β , and γ are hyperparameters.

RP Losses. Per-sample losses for training RPN are the detection
loss LRPdet,i and regression loss LRPbox,i . The former is defined as the
cross-entropy function over the predicted and the ground-truth
classes, in which the classes refer to either ci = 0, negative non-
captioned regions, or ci = 1, positive captioned regions. The latter
loss is defined by the smooth L1 function used in [14].

RC Losses. Region classification involves three losses with re-
spect to vi , gi , and hi , respectively. These three losses are de-
fined as the cross-entropy function over the predicted and the
ground-truth classes. LRCv,i , L

RC
д,i , and L

RC
h,i are evaluated based on the

ground-truth classes and the predicted classes given by MLPrc (vi ),
MLPrc (gi ), andMLPrc (hi ), respectively. As we take the predictions
from MLPrc (hi ) during evaluation, MLPrc (vi ) and MLPrc (gi ) are
treated as auxiliary predictions which are meant for enhancing
the discriminative power of individual vi and gi . Note that these
three predictions share the same set of parameters from MLPrc (·).
Minimizing LRC corresponds to minimizing Ecls in Eq. (1).

PR Loss. Proposal refinement loss LPRbox,i in Eq. (23), same as
LRPbox,i , is defined by the smooth L1 function over coordinates of
the predicted box and the ground-truth box. Note that minimizing
LPRbox corresponds to minimizing Ebox in Eq. (2).

CG Loss. Caption generation loss Lcapi , defined over word distri-
butions in ith ground-truth caption and predicted word distribution,
is measured by the cross-entropy function. Minimizing Lcap corre-
sponds to minimizing Ecap in Eq. (3).

4 EXPERIMENTS
4.1 Dataset
All the experiments are conducted on the Visual Genome dataset
[11], created for various vision-language tasks such as dense cap-
tioning, VQA, and SGG. For the DC task, the annotations with
region bounding boxes and corresponding captions are provided.
Even though three versions, V1.0, V1.2, and V1.4 are available, we

compare different DC models on V1.2 since the changes in V1.4
do not affect the data used in the DC task, and the state-of-the-art
models are extensively evaluated mainly on V1.2 [26].

4.2 Experimental Setting
Following the split protocol provided in [9, 26], the images are
divided into training, validation, and test sets, comprising 77398,
5000, and 5000 images, respectively. The provided bounding box
annotations are often highly overlapping, hence all the annotations
with IoU > 0.7 of their bounding boxes are merged into one [26].
Accordingly, each merged region across all sets can contain mul-
tiple reference captions, in which a caption for a merged region
is randomly drawn during training. The parameter settings in the
RPN strictly follow those in [26].

4.3 Hyperparameter Setting and Model
Training

The hyperparameters defined in Eqs. (21)–(23) are given by α1 = 0.1,
α2 = 0.05, β = 0.1, and γ = 0.01. The input image is resized so that
the longer side is of 720 pixels. The most frequent 10,000 words
are used and those excluded are replaced with an <UNK> (unknown
word) symbol. Hence, this amounts to 10,003 words (10,000 most
frequent words plus <SOS>, <END>, and <UNK>) available for the
caption model. Regions with captions longer than 10 words are
discarded, and each caption of the remaining ones is padded with
<SOS> in the beginning and <EOS> at the tail. The proposal refine-
ment and caption nets adopt three seperate LSTMs with 512 hidden
units. The experiments with three visual features: VGG16 [17],
which has two fully-connected layers both consisting of 4096 units
at the output, extracts 4096-dimensional features for each region
proposal. ResNet50 and ResNet101 [5] extract 1024-dimensional
features. The training batch size is set to be 1 (i.e. a single image)
with Nr = 256 (referred in Eqs. (21)–(23)) region proposals evenly
sampled from positive and negative proposals in the RPN.

All the models throughout the experiments are trained with
stochastic gradient descent with momentum set at 0.98. The initial
learning rate is 0.001, reduced by half every 100,000 steps (≈ 1.3
epochs). Models with VGG16 are trained only with Conv4_* and
Conv5_* being fine-tuned in the periods of 1.5–4 epochs and 5.5–10
epochs. Models with ResNet50 and ResNet101 are trained with 4th
residual block being fine-tuned in 0–1.5 epochs and 4–5.5 epochs,
and 3rd residual block as well being fine-tuned in the periods of
1.5–4 epochs and 5.5–10 epochs. We follow the stage-wise training
scheme suggested in [26] to train the proposed models. Firstly, we
train the RPN, the proposal refinement net, and the caption net
end-to-end. Here at this stage, only one caption LSTM (i.e. RNNvt ,
but not RNNд

t ) which receives the regional features vi is trained.
Secondly, we add the second LSTM stream RNNд

t with the context
features gi into the models and fine-tune the other parts. Finally, we
fine-tune the models and feed the region classifierMLPrc with hi of
Eq. (15), the features containing both visual and caption embedding.
This training scheme helps the models in which the performance
of each component is based upon each other, e.g., the proposal
refinement net can only start to refine the proposals generated by
the RPN once the RPN has learned to produce reasonable proposals.
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4.4 Evaluation Metric
The main metric adopted to evaluate the DC models is the mean
average precision (mAP) that jointly considers the goodness of
the region proposals and the generated captions in terms of IoU
and METEOR [2] scores with the ground-truth annotations [9].
mAP is calculated by averaging the average precision scores eval-
uated at different IoU thresholds, {0.3, 0.4, 0.5, 0.6, 0.7}, and ME-
TEOR thresholds, {0, 0.05, 0.1, 0.15, 0.2, 0.25}. Besides, we also adopt
mAP@{IoU=0.3,0.4,0.5,0.6,0.7} andmAP@{small,medium,large} (eval-
uated at proposals smaller than 482, between 482 − 1082, and larger
than 1082 pixels) to facilitate a deeper comparison between models.

Table 1: The representation of different attention modules
defined by γд and γv in Eqs. (13) and (10). The geometry rela-
tionship captured by αωi, j is considered by all different mod-
ules listed.

models ctx sim(sdp) sim(cos) ctx+sim(sdp) ctx+sim(cos)
(γд , γ s , γ c ) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1)

4.5 Quantitative Comparison
We compare the proposed framework with the state-of-the-art DC
models [26]. The pioneer DC framework from Johnson et al. [9]
reported the performance of their models on Visual Genome V1.0,
and thus a direct comparison with their results is not possible.
It is difficult to compare results also from many other different
DC models since, to the best of our knowledge, the only notable
and reliable results one can compare against are from [26]. In the
following subsections, we compare different models of our own
with configurations listed in Table 1 and those described in [26].

4.5.1 Comparing with State of the Art. We have tried our best to
replicate the best performing architecture reported in [26], and the
highest mAP we can obtain is 9.72, which is reasonably close to 9.96
reported in their work. First, we study whether the models with
added geometry relation and a single visual attention mechanism
can improve over those without. The results in the second to the
fourth rows (against those in the first row) in Table 2 highlight
the effect of a model that considers a single visual relationship
(implemented by either αдi, j , α

s
i, j , or α

c
i, j , referred in Sec. 3.3.1 and

3.3.2) and the geometry relationship captured by αωi, j (referred
in Sec. 3.3.3). We observe the consistent improvement made by
the proposed models in the mAP across VGG16, ResNet50, and
ResNet101 visual features.

Moving to the fifth row onwards in Table 2, one can observe
the best mAP is obtained from the proposed architecture when
GREatt (with geometry, concatenation-based, cosine distance based
attention modules simultaneously employed) and caption-boosted
classifier (described in Sec. 3.5) are used. The best result with VGG16
achieves 10.23, which, to date, surpasses the state-of-the-art num-
ber that has been reported. A greater margin of improvement in
mAP can be observed (+5.3%, +5.4%, +6.23% with VGG16, ResNet50,
and ResNet101, respectively) when comparing the best performing
models of ours and those in [26].

We also report the mAP at different proposal sizes in Table 3. One
can easily observe a similar trend where our architectures bring

steady improvement for all proposal size groups. This shows that
our models do not favor proposals of certain sizes, but provide all-
around improvement over arbitrary sizes of proposals. Moreover,
the largest improvement often comes from the mAP@small, indi-
cating that our context modeling scheme has the largest positive
impact on making inference on the small region proposals.

4.5.2 Comparing Models with Different Attention Modules. Here,
we study the effect on varying computational attention modules
proposed. The aim of the study is to answer whether (1) models
with GREatt employing one geometry and two visual attention
mechanisms (out of three presented in Sec. 3.3.1 and 3.3.2), im-
proves the results over those with one geometry and a single visual
attention mechanisms, and (2) models equipped with the region
classifier exposed with caption information improves the results
over those without.

Fusing attentions. From Table 2, one can also compare two
types of models: (1) those with combined visual attentions (pre-
sented in the fifth to sixth rows) and (2) those with single visual
attention (presented in the second to fourth rows). We compare
them by picking the best result (e.g. mAP) that a model in each type
can achieve. One can observe the improvement in mAPmade by the
models with combined visual attentions on VGG16 and ResNet50,
but not on ResNet101.

Classifying regions with captions. From Table 2, one can
observe a significant improvement made by the models with the
caption-boosted region classifier based on all visual feature ex-
tractors. From Table 3, we see that the largest improvements are
made on mAP@small, demonstrating that the caption information
is crucial to make smaller RoIs detectable.

4.6 Qualitative Results
We compare qualitative results from ourmodel (i.e. the best perform-
ing one, "ctx+sim(cos)" model listed in Table 1) and the one from
[26] with ResNet101 features in Figure 4. Clearly shown, Yang’s
model tends to ignore the relationship (Figure 4(a): missing "on a
cutting board"), or fail to encode the context (e.g. Figure 4(e): miss-
ing "laptop" in the caption). By contrast, our proposed model not
only captures the correct relationships, but also correctly recognizes
and names the objects in the context.

Next, we study attention weights (i.e. αωi, j , α
д
i, j , and α

c
i, j ) learned

to capture different relationships in Figure 5. One can observe
that three types of weights attend to quite distinct and sometimes
complementary sets of areas with respect to each proposal. While
the αωi, j and α

д
i, j tend to capture the necessary context (i.e. the

tennis field in this example), cosine distance based visual attention
αci, j tends to capture visually similar context. For example, while
the subject in the proposal is the tennis player in the distance, it
tries to retrieve similar person-like objects. The combined attention
is able to capture the most relevant context, e.g. in Figure 5(c), it
identifies who is holding the racket, and in Figure 5(d), it captures
almost the whole tennis court to be able to recognize that the clock
is in the court.

5 CONCLUSIONS
In this paper, we visited the dense captioning task, which serves as
a powerful means to facilitate multimodal context understanding
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Table 2: Quantitative results of models with VGG16, ResNet50, and ResNet101, respectively, on Visual Genome V1.2. models
column showsmodels with varying visual attentionmodules named in Table 1. cap indicates if the caption embedding is added
when classifying the region proposals. The best model with respect to eachmetric is highlighted in bold, and the second best is
underlined. (*) indicates the figure reported in [26]while the other figures are obtained fromour implementation.@n indicates
the mAP score evaluated at IoU=n, n = {0.3, 0.4, 0.5, 0.6, 0.7}.

VGG16 ResNet50 ResNet101
models cap mAP @0.3 @0.4 @0.5 @0.6 @0.7 mAP @0.3 @0.4 @0.5 @0.6 @0.7 mAP @0.3 @0.4 @0.5 @0.6 @0.7

Yang et al. [26] - 9.72 (9.96*) 15.13 13.16 10.25 6.77 3.28 10.89 16.85 14.62 11.55 7.73 3.70 11.92 18.16 15.83 12.58 8.68 4.37
ctx - 9.85 15.22 13.25 10.41 6.96 3.39 11.00 16.48 14.52 11.70 8.12 4.14 12.51 17.73 15.76 12.84 9.14 4.82

sim(sdp) - 9.88 15.29 13.32 10.44 6.96 3.39 11.00 16.51 14.58 11.68 8.11 4.12 11.79 17.95 15.67 12.43 8.59 4.30
sim(cos) - 9.73 15.10 13.15 10.29 6.78 3.33 11.07 17.09 14.85 11.77 7.90 3.75 11.73 17.91 15.64 12.40 8.49 4.20

ctx+sim(sdp) - 9.97 15.33 13.40 10.55 7.06 3.48 11.03 16.54 14.63 11.70 8.14 4.14 12.14 18.37 16.09 12.87 8.88 4.96
ctx+sim(cos) - 9.93 15.90 13.59 10.36 6.68 3.11 11.10 16.62 14.73 11.77 8.20 4.19 12.15 18.37 16.09 12.88 8.90 4.48
ctx+sim(sdp) ✓ 10.22 16.30 14.00 10.71 6.91 3.14 11.39 17.03 14.98 12.09 8.43 4.40 12.52 18.72 16.37 13.23 9.34 4.93
ctx+sim(cos) ✓ 10.23 16.39 14.04 10.76 6.85 3.13 11.48 17.14 15.08 12.15 8.56 4.45 12.67 18.39 16.32 13.44 9.79 5.40

Table 3: Results on comparing models on mAP@{small,
medium, large}, denoted by @S, @M, @L.

VGG16 ResNet50 ResNet101
models cap @S @M @L @S @M @L @S @M @L

Yang et al. [26] 3.99 8.15 14.22 4.09 9.08 16.03 4.78 9.94 17.35
ctx - 4.03 8.39 14.46 4.19 8.82 16.26 4.61 9.98 17.82

sim(sdp) - 4.00 8.25 14.36 4.33 8.97 16.24 4.28 9.57 17.44
sim(cos) - 4.14 8.23 14.19 4.46 9.21 16.16 4.36 9.68 17.42

ctx+sim(sdp) - 3.83 8.34 14.63 4.35 9.13 16.22 4.46 9.86 17.79
ctx+sim(cos) - 3.95 8.53 14.24 4.48 9.11 16.27 4.52 10.15 17.71
ctx+sim(sdp) ✓ 4.19 8.63 14.46 4.25 9.52 16.44 4.83 10.55 18.14
ctx+sim(cos) ✓ 4.39 8.61 14.42 4.68 9.34 16.80 4.94 10.48 18.39

Figure 4: Qualitative comparison between the proposed
method and that proposed by Yang et al. [26]. More relation-
ships and context information are revealed in the captions
generated by our method. Captions (ours / [26]): (a) two pieces
of cheese on a cutting board / a slice of yellow cheese, (b) a blue
bus on the road / a blue and white bus, (c) green trees on the side
of the tracks / green leaves on the tree, (d) a person skiing on the
snow / person wearing blue pants, (e) screen of laptop computer /
a computer monitor.

and learning. We proposed an improved architecture which fea-
tures (1) a Geometry-aware Relational Exemplar attention (GREatt)
mechanism and (2) a joint visual-textual relational region classifier,
for the dense captioning problem. Our proposed methods bring sig-
nificant improvements over the state-of-the-art results. In addition,

Figure 5: Different attention mechanisms jointly learned
with model "ctx+sim(cos)" (referred in Table 1). Each set of
image, from top to bottom, left to right, shows 1) detection
and caption results, 2) combined attention, αi, j , 3) geometry
attention, αωi, j , 4) contextual dependent visual attention, α

д
i, j ,

and 5) visually similar and supported attention, αci, j .

we demonstrated that GREatt captures varying and meaningful
contexts for different regions to construct contextually dependent
and region-specific features. The proposed region classifier which
learns on the subspace shared with visual and textual embeddings
has also demonstrated its effectiveness and led to improvements
in almost all metrics. Qualitatively, our proposed models, compar-
ing to the prior arts, are more capable of generating captions that
capture relationships between objects and are able to accurately
recognize and name the objects in the context. However, how to op-
timally combine the heterogeneous types of attention still remains
an open question, and we leave it as a future avenue of research.
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B.10 AALTO’s paper in CAIP 2019 conference [9]

This paper describes the development of deep neural network based techniques for indoor
scene recognition in which researchers at AALTO have participated. The results may later
have influence on the work in MeMAD. It has been published in the CAIP 2019 conference.
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Abstract. Convolutional neural networks (CNNs) have recently
achieved outstanding results for various vision tasks, including indoor
scene understanding. The de facto practice employed by state-of-the-art
indoor scene recognition approaches is to use RGB pixel values as input
to CNN models that are trained on large amounts of labeled data (Ima-
geNet or Places). Here, we investigate CNN architectures by augmenting
RGB images with estimated depth and texture information, as multi-
ple streams, for monocular indoor scene recognition. First, we exploit
the recent advancements in the field of depth estimation from monoc-
ular images and use the estimated depth information to train a CNN
model for learning deep depth features. Second, we train a CNN model
to exploit the successful Local Binary Patterns (LBP) by using mapped
coded images with explicit LBP encoding to capture texture information
available in indoor scenes. We further investigate different fusion strate-
gies to combine the learned deep depth and texture streams with the
traditional RGB stream. Comprehensive experiments are performed on
three indoor scene classification benchmarks: MIT-67, OCIS and SUN-
397. The proposed multi-stream network significantly outperforms the
standard RGB network by achieving an absolute gain of 9.3%, 4.7%,
7.3% on the MIT-67, OCIS and SUN-397 datasets respectively.

Keywords: Scene recognition · Depth features · Texture features

1 Introduction

Scene recognition is a fundamental problem in computer vision with numer-
ous real-world applications. The problem can be divided into recognizing indoor

c© Springer Nature Switzerland AG 2019
M. Vento and G. Percannella (Eds.): CAIP 2019, LNCS 11678, pp. 196–208, 2019.
https://doi.org/10.1007/978-3-030-29888-3_16
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Multi-stream Convolutional Networks for Indoor Scene Recognition 197

versus outdoor scene types. Initially, most approaches target the problem of out-
door scene classification with methods demonstrating impressive performance on
standard benchmarks, such as fifteen scene categories [17]. Later, the problem of
recognizing indoor scene categories have received much attention with the intro-
duction of specialized indoor scene datasets, including MIT-67 [23]. Different to
outdoor scene categorization, where global spatial layout is distinctive and one
of the most discriminative cues, indoor scenes are better characterized either
based on global spatial properties or local appearance information depending on
the objects they contain. In this work, we investigate the challenging problem of
automatically recognizing indoor scene categories.

In recent years, deep convolutional neural networks (CNNs) have revolution-
ized the field of computer vision setting new state-of-the-art results in many
applications, including scene recognition [32]. In the typical scenario, deep net-
works or CNNs take raw pixel values as an input. They are trained using a
large amount of labeled data and perform a series of convolution, local normal-
ization and pooling operations (called layers). Generally, the final layers of a
deep network are fully connected (FC) and employed for the classification pur-
pose. Initially, deep learning based scene recognition approaches employed CNNs
pre-trained on the ImageNet [26] for object recognition task. These pre-trained
deep networks were then transferred for the scene recognition problem. However,
recent approaches have shown superior results when training deep networks on
a specialized large-scale scene recognition dataset [32]. In all cases, the de facto
practice is to use RGB patches as input when training these networks.

As mentioned above, the standard procedure is to employ RGB pixel values
as input for training deep networks. Besides color, texture features also pro-
vide a strong cue for scene identification at both the superordinate and basic
category levels [24]. Significant research efforts have been dedicated in the past
in designing discriminative texture features. One of the most successful hand-
crafted texture descriptors is that of Local Binary Patterns (LBP) and its vari-
ants [12,21,22]. LBP is based on the signs of differences of neighboring pixels
in an image and is invariant to monotonic gray scale variations. Recent stud-
ies [1,4] have investigated employing deep learning to design deep texture rep-
resentations.

Other than color and texture, previous works [7,11,27,28] have shown the
effectiveness of depth information and that depth images can be used simulta-
neously with RGB images to obtain improved recognition performance. How-
ever, most of these approaches require depth data acquired from depth sen-
sors together with camera parameters to associate point clouds to image pixels.
Despite increased availability of RGB-D sensors, standard large-scale object and
scene recognition benchmarks (ImageNet and Places) still contain RGB images
captured using different image sensors with no camera parameters to gener-
ate accurate point clouds. In a separate research line, recent works [5,20] have
investigated estimating depth information from single monocular images. These
methods employ RGB-D acquired through depth sensors during the training
stage to infer the depth of each pixel in a single RGB image. Here, we aim
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to exploit these advancements in depth estimation from monocular images and
hand-crafted discriminative texture features to integrate explicit depth and tex-
ture information for indoor scene recognition in the deep learning architecture.

In this work, we propose a multi-stream deep architecture where the esti-
mated depth and texture streams are fused with the standard RGB image stream
for monocular indoor scene recognition. The three streams can be integrated at
different stages in the deep learning architecture to make use of the complemen-
tary information available in these different modalities. In the first strategy, the
three streams are integrated at an early stage by aggregating the RGB, texture
and estimated depth image channels as the input to train a joint multi-stream
deep CNN model. In the second strategy, the three streams are trained separately
and combined at a later stage of the deep network. To the best of our knowl-
edge, we are the first to propose a multi-stream deep architecture and investigate
fusion strategies to combine RGB, estimated depth and texture information for
monocular indoor scene recognition. Figure 1 shows example indoor scene cate-
gories from the MIT-67 dataset and their respective classification accuracies (in
%) when using different streams and their combination in the proposed multi-
stream architecture.

Auditorium Bedroom Closet Grocerystore kitchen Dining Room Classroom Fastfood Restaurant
RGB 33 57 72 62 52 44 67 53
Depth 56 48 83 48 56 33 61 35
Texture 56 61 72 52 57 50 72 35
Three-Stream 72 67 84 86 71 78 83 94

Fig. 1. Example categories from MIT-67 indoor scene dataset and their respective
classification accuracies (in %) when using different streams: baseline standard RGB,
estimated depth and texture. We also show the classification accuracies when combining
these streams in our late fusion based three-stream architecture. The classification
results are consistently improved with our three-stream architecture, highlighting the
complementary information possessed by the three streams.

2 Related Work

Indoor Scene Recognition: Recently, indoor scene recognition has gained
a lot of attention [6,8,14–16]. Koskela [16] propose an approach where CNNs,
trained on object recognition data, using different architectures are employed as
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feature extractors in a standard linear-SVM-based multi-feature scene recogni-
tion framework. A discriminative image representation based on discriminative
mid-level convolutional activations is proposed by [14] to counter variability in
indoor scenes. Guo et al. [6] propose an approach by integrating local convolu-
tional supervision layer that is constructed upon the convolutional layers of deep
network. The work of [15] proposes an approach based on spectral transforma-
tion of CNN activations integrated as a unitary transformation within a deep
network. All these aforementioned deep learning based approaches are trained
using RGB pixel values of an image.

Depth Estimation: Recent approaches [5,19,20] employ deep learning to learn
depth estimation in monocular images. The work of [5] proposes a multi-scale
convolutional architecture for depth prediction, surface normals and seman-
tic labeling. Li et al. [19] introduce an approach by regressing CNN features
together with a post-processing refinement step employing conditional random
fields (CRF) for depth estimation. The work of [20] proposes a deep convolu-
tional neural field model that jointly learns the unary term and pairwise term of
continuous CRF in a unified CNN framework. Different to [5], where the depth
map is directly regressed via convolutions from an input image, the approach
of [20] explicitly models the relations of neighbouring superpixels by employing
CRF. Both unary and binary potentials are learned in a unified deep network
framework. Here, we employ deep convolutional neural field model of [20] as a
depth estimation strategy for our monocular deep depth network stream. In our
multi-stream architecture, the monocular depth stream is trained from scratch,
on the large-scale ImageNet and Places datasets, for indoor scene recognition.

Texture Representation: Robust texture description is one of the fundamen-
tal problems in computer vision and is extensively studied in literature. Among
existing methods, the Local Binary Patterns (LBP) descriptor [22] is one of
the most popular hand-crafted texture description methods and several of its
variants have been proposed in literature [21]. Recent approaches [1,4] have
investigated deep learning for the problem of texture description. Cimpoi et
al. [4] propose to encode convolutional layers of the deep network using the
Fisher Vector scheme. Rao et al. [1] investigate the problem of learning texture
representation and integrate LBP within deep learning architecture. In that app-
roach, LBP codes are mapped to points in a 3D metric space using the approach
of [18]. Here, we employ the strategy proposed in [1] to learn the texture stream
and combine it with RGB and estimated depth streams in a multi-stream deep
architecture for indoor scene recognition.

3 Our Multi-stream Deep Architecture

Here, we present our multi-stream deep architecture for indoor scene recognition.
We also investigate fusion schemes to integrate different modalities in the deep
learning architecture. We base our approach on the VGG architecture [3] that
takes as input an image of 224 × 224 pixels and consists of five convolutional
(conv) and three fully-connected (FC) layers.
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3.1 Deep Depth Stream

The first step in designing of the depth stream is to compute the estimated
depth image given its RGB counterpart. We employ the method of [20] for
depth estimation of each pixel in a monocular image. The depth estimation app-
roach employs continuous CRF to explicitly model the relations of neighbouring
superpixels. Both unary and binary terms of continuous CRF are learned in an
unified deep network framework. In the depth estimation model, each image is
comprised of small regions, termed as superpixels, with nodes of a graphical
model defined on them. Each superpixel in an image is described by the depth
value of its centroid. Let I be an image and y = [sp1, . . . , spm]� ∈ Rm be a
vector of all m superpixels in image I. The conditional probability distribution
of the data is then modelled by employing the following density function:

P (y | I) =
1

Z(I)
exp(−EN(y, I)), (1)

where EN is the energy function and the partition function represented by Z is
defined as:

Z(I) =

∫

y

exp {−EN(y, I)} dy. (2)

Due to the continuous nature of the depth values y, no approximation method
is required to be applied. The subsequent MAP inference problem is then solved
in order to obtain the depth value of a new image. The energy function is written
as a combination of unary potentials UN and pairwise potentials PV over the
superpixels M and edges S of the image I:

EN(y, I) =
∑

p∈M
UN(yp, I) +

∑

(p,q)∈S
PV (yp, yq, I), (3)

Here, the unary potential UN regresses the depth value for a single super-
pixel whereas the pairwise potential PV invigorates the superpixel neighbor-
hoods with similar appearances to hold similar depth values. In the work of [20],
both the unary potentials UN and the pairwise potentials PV are learned jointly
in a unified deep network framework. The deep network comprises the following
components: a continuous CRF loss layer consisting of a unary part and a pair-
wise part. Given an input image, image patches centred around each superpixel
centroid are considered. Each image patch is used as an input to the unary part
which is fed into the deep network. The network returns a single value repre-
senting the regressed depth value of the superpixel. The unary part of the deep
network consists of five convolutional and four fully-connected layers. The unary
potential is formulated by the output of the deep network by considering the
following least square loss:

UN(yp, I; θ) = (yp − zp(θ))
2,∀p = 1, . . . , m, (4)
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Here, zp is the regressed depth of the homogeneous region (superpixel) p,
parameterized by the deep network parameters θ. In case of the pairwise part of
the network, the input is the similarity vectors of all neighboring superpixel pairs,
fed to the FC layer with shared parameters among different superpixel pairs.
The pairwise term enables neighboring superpixels with similar appearances to
have similar depth values. Three types of pairwise similarities are considered:
color histogram difference, color difference and texture disparity based on LBP.
The output is then a 1-dimensional similarity vector for each of the neighboring
superpixel pairs. Consequently, outputs from the unary and the pairwise terms
are taken by the continuous CRF loss layer in order to minimize the negative log-
likelihood. Standard RGB-D datasets, including NYUD2 have the same viewing
angles for both the camera and the depth sensor. This implies that objects in
a depth image possess the same 2D shapes as in RGB image with the only
difference is that the RGB values are replaced by depth values. The estimated
depth images alleviate the problem of intra-object variations, which is desired
for scene understanding. During the construction of the depth stream, we first
estimate depth values of the input RGB image using the approach described
above resulting in a single-channel depth map. The estimated depth values are
log-normalized to the range of [0, 255] and duplicated into three channels which
are then input to the deep learning framework. Figure 2 shows example RGB
images and their corresponding estimated depth maps.

Fig. 2. On the left: example RGB images and the corresponding texture coded mapped
images (visualized here in color) together with estimated depth images. On the right:
visualization of filter weights from the RGB, texture and estimated depth CNN models.

3.2 Deep Texture Stream

In addition to the standard RGB and estimated depth streams, we propose to
integrate an explicit texture stream for indoor scene recognition since texture
features have shown to be crucial for scene understanding. Here, we base our
texture stream on the popular LBP descriptor [22] where the neighborhood of
a pixel is described by its binary derivatives used to form a short code for the
neighborhood description of the pixel. These short codes are binary numbers
(lower than threshold (0) or higher than the threshold (1)), where each LBP
code can be regarded as a micro-texton. Each pixel in the image is allocated a
code of the texture primitive with its best local neighborhood match.
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When integrating the LBP operator in the deep learning architecture, a
straightforward way is to directly employ LBP codes as an input to the deep
network. However, the direct incorporation of LBP codes as input is infeasible
since the convolution operations, equivalent to a weighted average of the input
values, employed within CNNs are unsuitable for the unordered nature of the
values of the LBP code. To counter this issue, the work of [18] proposes to map
the LBP code values to points in a 3D metric space. In this metric space, the
Euclidean distance approximates the distance between the LBP code values.
Such a transformation enables averaging of LBP code values during convolu-
tion operations within CNN models. First, a distance δj,k is defined between the
LBP codes LBPTj and LBPTk. In the work of [18], Earth Mover’s Distance
(EMD) [25] is employed since it takes into account both the different bit values
and their locations. Afterwards, a mapping is derived of the LBP codes into
a DM -dimensional space which approximately preserves the distance between
them. The mapping is derived by applying Multi Dimensional Scaling (MDS) [2].
The mapping enables the transfer of LBP code values into a representation that
is suitable to be used as input to the deep network. As in [1,18], the dimen-
sionality DM is set to three and the resulting texture representation is used
to train a texture stream for indoor scene recognition. Figure 2 shows example
RGB images and their corresponding texture coded mapped images.

Fig. 3. Our late fusion based multi-stream deep architecture. In this architecture, RGB,
estimated depth and texture streams are kept separate and the point of fusion, which
combines the three network towers, is at the end of the network.

3.3 Multi-stream Fusion Strategies

We consider two fusion strategies to integrate the RGB, estimated depth and
texture streams in a multi-stream architecture. In the first strategy, termed as
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early fusion, the three network streams are combined at an early stage as inputs
to the deep network. As a result, the input to CNN is of 224 × 224 × N dimen-
sions, where N is the number of image channels. When combining the three
streams in an early fusion strategy, the number of image channels is N = 7 (3
RGB, 1 depth and 3 texture). A joint deep model is trained due to the aggrega-
tion of the image channels. In the second fusion strategy, termed as late fusion,
the three networks are trained separately. The standard RGB stream network
takes raw RGB values as input. The texture stream network takes texture coded
mapped image as an input to the CNN model. This texture coded mapped image
is obtained by first computing the LBP encoding that transforms intensity values
in an image to one of the 256 LBP codes. The code values are then mapped into
a 3D metric space, as described above, resulting in a 3-channel texture coded
mapped image. The depth image is obtained by converting an RGB image to an
estimated depth map, based on the procedure described earlier, to be used as an
input to the depth stream. Consequently, the three streams are fused at the final
stages of the deep network either by using FC layer activations with linear SVMs
or combining the score predictions from individual streams. Figure 3 shows our
late fusion based three stream architecture. The three streams are separately
trained, from scratch, on both ImageNet [26] and Places [32] datasets. Figure 2
shows the VGG architecture based visualization of filter weights from the RGB,
texture and estimated depth models trained on the ImageNet.

4 Experimental Results

Experimental Setup: We train our multi-stream network, described in Sect. 3,
from scratch on the ImageNet 2012 [26] and Places 365 [32] training sets, respec-
tively. In all cases, the learning rate is set to 0.001. The weight decay which
contributes reducing the training error of the deep network is set to 0.0005. The
momentum rate which is associated with the gradient descent method employed
to minimize the objective function is set to 0.9. In case of fine-tuning the pre-
trained deep models, we employ training samples with a batch size of 80, a
momentum value of 0.9 and an initial learning rate of 0.005. Furthermore, in
all experiments the recognition results are reported as the mean classification
accuracy over all scene categories in a scene recognition dataset. From the net-
work prediction, the scene category label providing the highest confidence is
assigned to the test image. The overall results are obtained by calculating the
mean recognition score over all scene classes in each scene recognition dataset.

Datasets: MIT-67 [23] consists of 15,620 images of 67 indoor scene categories.
We follow the standard protocol provided by the authors [23] by using 80 images
per scene category for training and another 20 images for testing. OCIS [14] is
the recently introduced large-scale object categories in indoor scenes dataset.
It comprises of 15,324 images spanning more than 1300 commonly encoun-
tered indoor object categories. We follow the standard protocol provided by
the authors [14] by defining a train-test split of (67% vs 33%) for each cate-
gory. SUN-397 [30] dataset consists of 108,754 images of 397 scene categories.
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Here, the scene categories are both from indoor and outdoor environments. Each
category in this dataset has at least 100 images. We follow the standard pro-
tocol provided by the authors [30] by dividing the dataset into 50 training and
50 test images per scene category. Since our aim is to investigate indoor scene
recognition, we focus on the 177 indoor scene categories for the baseline compar-
ison. Later, we show the results on the full SUN-397 dataset for state-of-the-art
comparison.

Baseline Comparison: We compare our three-stream approach with the base-
line standard RGB stream. Further, both early and late fusion strategies are
evaluated for fusing the RGB, estimated depth and texture streams. For a fair
comparison, we employ the same network architecture together with the same set
of parameters for both the standard RGB and our multi-stream networks. Table 1
shows the baseline comparison with deep models trained on both ImageNet and
Places datasets. We first discuss the results based on deep models pre-trained on
the ImageNet. The baseline standard RGB deep network achieves average classi-
fication scores of 63.0%, 39.1%, and 46.0% on the MIT-67, OCIS, and SUN-397
datasets, respectively. The estimated depth based deep stream obtains mean
recognition rates of 41.0%, 25.2%, and 26.0% on the MIT-67, OCIS and SUN-
397 datasets, respectively. The texture coded deep image stream yields average
classification accuracies of 59.1%, 33.6%, and 38.9% on the three scene datasets.
In the case of the two fusion strategies, superior results are obtained with late
fusion. The late fusion based two-stream network with RGB and depth streams
obtains average classification scores of 67.1%, 40.9%, and 48.4% on the MIT-
67, OCIS and SUN-397 datasets, respectively. Further, the late fusion based
two-stream network with RGB and texture streams achieves average recognition
rates of 69.3%, 42.5%, and 51.1% on the MIT-67, OCIS and SUN-397 datasets,
respectively. The proposed late fusion based three-stream deep network signif-
icantly outperforms the baseline standard RGB deep stream on all datasets.
Significant absolute gains of 9.3%, 4.7%, and 7.3% is achieved on the MIT-67,
OCIS and SUN-397 datasets, respectively.

Other than the OCIS dataset, results are improved overall when employing
deep models pre-trained on the Places scene dataset. The inferior recognition
results in the case of the OCIS dataset are likely due to the fact that this dataset
is based on indoor objects as categories instead of scenes. When comparing
models trained on the Places dataset, our late fusion based three-stream deep
architecture provides a substantial gains of 7.6%, 5.7%, and 4.9% on the MIT-67,
OCIS and SUN-397 datasets respectively, compared to the baseline RGB stream.

We further analyze the impact of integrating depth and texture informa-
tion within the deep learning architecture by looking into different indoor scene
hierarchies available in the SUN-397 dataset. The indoor categories in the SUN-
397 dataset are further annotated with the following scene hierarchies: shop-
ping/dining with 40 indoor scene classes, workplace (office building, factory,
lab, etc.) with 40 indoor scene classes, home/hotel with 35 indoor scene classes,
transportation (vehicle interiors, stations, etc.) with 21 indoor scene classes,
sports/leisure with 22 indoor scene classes, and cultural (art, education, religion,
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Table 1. Comparison (overall accuracy in %) of our proposed three-stream deep archi-
tecture with the baseline standard RGB stream on the three scene datasets. We show
multi-stream results with both early and late fusion schemes using deep networks either
pre-trained on ImageNet or Places. Our proposed late-fusion based three-stream archi-
tecture significantly outperforms the baseline standard RGB stream on all datasets.

Architecture Pre-training: imagenet Pre-training: places

MIT-67 OCIS SUN-397 MIT-67 OCIS SUN-397

RGB deep stream (baseline) 63.0 39.1 46.0 73.6 32.5 58.6

Depth deep stream 41.0 25.2 26.0 51.5 21.4 34.6

Texture deep stream 59.1 33.6 38.9 68.7 27.2 49.3

Two-stream {RGB, depth} (early fusion) 65.2 39.5 46.7 74.3 32.8 59.3

Two-stream {RGB, depth} (late fusion) 67.1 40.9 48.4 76.5 34.1 60.5

Two-stream {RGB, texture} (early fusion) 65.7 39.9 47.9 75.3 33.3 59.7

Two-stream {RGB, texture} (late fusion) 69.3 42.5 51.1 78.8 36.5 61.8

Three-stream {RGB, depth, texture} (early fusion) 67.8 40.7 48.8 76.5 34.9 60.6

Three-stream {RGB, depth, texture} (late fusion) 72.3 43.8 53.3 81.2 38.2 63.5

Table 2. Comparison (overall accuracy in %) of our three-stream deep architecture
with the baseline standard RGB stream on different indoor scene hierarchies available
in SUN-397 dataset. The proposed three-stream deep architecture (late fusion) consis-
tently improves the baseline standard RGB stream on all indoor scene hierarchies.

Architecture Shopping/dining Workplace Home/hotel Transportation Sports/leisure Cultural

RGB deep stream

(baseline)

38.4 46.5 44.3 56.1 63.8 43.6

Ours {RGB, depth,

texture} (late fusion)

45.5 52.5 54.3 64.7 67.6 51.3

Fig. 4. Example images from SUN-397 indoor categories where our approach provides
the biggest increase (top) and the biggest decrease (bottom), compared to the baseline.
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Table 3. Comparison (overall accuracy in %) with the state-of-the-art approaches.

Method Publication MIT-67 OCIS SUN-397

Multi-scale hybrid CNNs [10] CVPR 2016 86.0 - 70.2

DRCF-CNN [14] TIP 2016 71.8 32.0 -

SLSIF-CNN [8] TIP 2016 74.4 - -

PatchNets [29] TIP 2017 84.9 - 71.7

LSHybrid-CNNs [6] TIP 2017 83.8 - 67.6

Hybrid CNN models [31] TCSVT 2017 86.0 - 70.7

Spectral-CNNs [15] ICCV 2017 84.3 - 67.6

SCF-CNNs [13] MVA 2018 83.1 - -

This paper - 86.4 45.3 69.2

military, law, politics, etc.) with 36 indoor scene classes. Note that some indoor
scene categories are shared across different scene hierarchies. Table 2 shows the
results obtained using the standard RGB and our three-stream network on the six
scene hierarchies. Our approach provides significant gains of 7.1%, 6.0%, 10.0%,
3.8%, 7.5% and 7.3% on the six scene hierarchies (shopping/dining, Workplace,
home/hotel, transportation, sports/leisure, and cultural), respectively. Figure 4
shows example images from different indoor scene categories from the SUN-397
dataset on which our three-stream architecture provides the biggest improvement
(top) and the biggest drop (bottom), compared to the standard RGB network.

State-of-the-Art Comparison: State-of-the-art approaches employ very deep
hybrid models pre-trained on both the ImageNet and Places datasets. There-
fore, we also combine our late fusion based three-stream network, at the
score/prediction level, with the very deep networks: ResNet-50 architecture [9].
Table 3 shows the comparison. Among existing methods, the works of [10,31]
provide superior performance with a mean classification accuracy of 86.0% on
the MIT-67 dataset. Our approach achieves improved results compared to both
these methods with a mean recognition rate of 86.4%. On the OCIS dataset,
our approach significantly outperforms the existing DRCF-CNN [14] by achiev-
ing a mean accuracy of 45.3%. On the SUN-397 dataset, the best results are
obtained by PatchNets [29] approach. Our approach obtains an average classifi-
cation accuracy of 69.2%.

5 Conclusions

We introduced a three-stream deep architecture for monocular indoor scene
recognition. In addition to the standard RGB, we proposed to integrate explicit
estimated depth and texture streams in the deep learning architecture. We fur-
ther investigated different fusion strategies to integrate the three sources of infor-
mation. To the best of our knowledge, we are the first to investigate fusion strate-
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gies to integrate RGB, estimated depth and texture information for monocular
indoor scene recognition.
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B.11 AALTO’s paper in ICCV 2019 conference [10]

This paper describes the development of deep neural network based techniques for human-
object interaction detection in which researchers at AALTO have participated. The results
may later have influence on the work in MeMAD. It has been published in the ICCV 2019
conference.
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Abstract

Human-object interaction detection is an important and
relatively new class of visual relationship detection tasks,
essential for deeper scene understanding. Most existing
approaches decompose the problem into object localiza-
tion and interaction recognition. Despite showing progress,
these approaches only rely on the appearances of humans
and objects and overlook the available context information,
crucial for capturing subtle interactions between them. We
propose a contextual attention framework for human-object
interaction detection. Our approach leverages context by
learning contextually-aware appearance features for hu-
man and object instances. The proposed attention mod-
ule then adaptively selects relevant instance-centric con-
text information to highlight image regions likely to contain
human-object interactions. Experiments are performed on
three benchmarks: V-COCO, HICO-DET and HCVRD. Our
approach outperforms the state-of-the-art on all datasets.
On the V-COCO dataset, our method achieves a relative
gain of 4.4% in terms of role mean average precision
(mAProle), compared to the existing best approach.

1. Introduction
Recent years have witnessed tremendous progress in var-

ious instance-level recognition tasks, including object de-
tection and segmentation. These instance-level problems
have numerous applications in robotics, autonomous driv-
ing and surveillance. However, such applications demand a
deeper knowledge of scene semantics beyond instance-level
recognition, such as the inference of visual relationships
between object pairs. Detecting human-object interactions
(HOI) is a class of visual relationship detection. Given an
image, the task is to not only localize a human and an object,

∗Equal contribution
†Work done at IIAI during Tiancai’s internship.

but also recognize the interaction between them. Specif-
ically, it boils down to detecting 〈human, action, object〉
triplets. The problem is challenging as it focuses on both
human-centric interactions with fine-grained actions (i.e.,
riding a horse vs. feeding a horse) and involves multiple co-
occurring actions (i.e., eating a donut and interacting with a
computer while sitting on a chair).

Most existing HOI detection approaches typically tackle
the problem by decomposing it into two parts: object local-
ization and interaction recognition [1, 10, 11, 13, 20, 26].
In the first part, off-the-shelf two-stage object detectors
[7, 22, 8] localize both human and object instances in an im-
age. In the second part, detected human and object instances
and the pairwise interaction between them are treated sepa-
rately in a multi-stream network architecture. Recent works
have attempted to improve HOI detection by integrating,
e.g., structural information [20], gaze and pose cues [26].
Despite these recent advances, the HOI detection perfor-
mance is still far from satisfactory compared to other vision
tasks, such as object detection and instance segmentation.

Current HOI detection approaches tend to focus on ap-
pearance features of human and object instances (bounding-
boxes) that are central to scoring human-object interactions,
and thereby identifying triplets. However, the readily avail-
able auxiliary information, such as context, at various levels
of image granularity is overlooked. Context information is
known to play a crucial role in improving the performance
of several computer vision tasks [4, 27, 18, 2]. However,
it is relatively underexplored for the high-level task of HOI
detection, where context around each candidate detection
is likely to provide complementary information to standard
bounding-box appearance features. Global context provides
valuable image-level information by determining the pres-
ence or absence of a specific object category. For instance,
when detecting driving a boat interaction category, person,
boat and water are likely to co-occur in an image. How-
ever for drive a car category, interaction (drive) remains the
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Figure 1. Example of HOI detections using the proposed approach and the recently introduced GPNN method [20]. The four examples
depict two HOI detection cases. First in (a) and (b), different object categories (car and boat) involve the same human-object interaction
(drive). Second in (c) and (d), different human-object interactions (cut an apple and hold an apple) involve the same object (apple). In case
of (a) and (c), GPNN method fails to correctly pair the agent (person) and object, while it miss-classifies the action categories (b) and (d).
Our approach accurately groups the agent and the respective object, while correctly classifying the action labels (scores) in all four cases.

same and only context (water) is changed. Besides global
context, information in the immediate vicinity of each hu-
man/object instance provides additional cues to distinguish
different interactions, e.g., various interactions involving
the same object. For instance, the surrounding neighbor-
hood in eating an apple category is the face of the person
whereas for cutting an apple category, it is knife and part of
the hand (see Fig. 1). In this work, we leverage the context
information to the relatively new problem of HOI detection.
Contributions: We first introduce a contextually enriched
appearance representation for human and object instances.
While providing auxiliary information, global context also
introduces background noise which hampers interaction
recognition performance. We therefore propose an atten-
tion module to suppress the background noise, while pre-
serving the relevant contextual information. Our attention
module is conditioned to specific instances of humans and
objects to highlight the interaction regions, i.e., kick a sports
ball versus throw a sports ball categories. The resulting hu-
man/object attention maps are then used to modulate the
global features to highlight image regions that are likely to
contain a human-object interaction.

We validate our approach on three HOI detection bench-
marks: V-COCO [11], HICO-DET [1] and HCVRD [32].
We perform a thorough ablation study to show the impact of
context information for HOI detection. The results clearly
demonstrate that the proposed approach provides a signifi-
cant improvement over its non-contextual baseline counter-
part. Further, our contextual attention-based HOI detection
framework sets a new state-of-the-art on all datasets. On
HICO-DET dataset, our approach yields a relative gain of
9.4% in terms of mean average precision (mAP), compared
to the best published method [5]. Fig. 1 shows a comparison
of our approach with GPNN [20] on HICO-DET images.

2. Related Work

Object Detection: Significant progress has been made in
the field of object detection [7, 23, 22, 8, 29, 15, 21, 17],

predominantly due to deep convolutional neural networks
(CNNs). Generally, CNN-based object detectors can be di-
vided into two-stage and single-stage approaches. In the
two-stage approach, object detection methods [7, 22, 8] first
employ an object proposal generator to generate regions of
interests, which are then passed through an object classifi-
cation and bounding-box regression pipeline. In contrast,
single-stage detection methods [21, 17] directly learn ob-
ject category predictions (classification) and bounding-box
locations (regression) using anchors to predict the offsets
of boxes instead of coordinates. Two-stage object detectors
are generally more accurate compared to their single-stage
counterparts. As in previous HOI detection works [10, 1],
we employ an off-the-shelf two-stage FPN detector [15] to
detect both human and object instances.
Human-Object Interaction Detection: Gupta and Malik
[11] were the first to introduce the problem of visual se-
mantic role labeling. In this problem, the aim is to detect a
human, an object, and label the interaction between them.
Gkioxrari et al., [10] proposed a human-centric approach
by extending the Faster R-CNN pipeline [22] with an ad-
ditional branch to classify both actions and action-specific
probability density estimation over the target object loca-
tion. The work of [20] proposed a Graph Parsing Neural
Network (GPNN) in which HOI structures are represented
with graphs and then optimal graph structures are parsed in
an end-to-end fashion. The work of [26] introduced a hu-
man intention-driven approach, where both pose and gaze
information are exploited in a three-branch framework: ob-
ject detection, human-object pairwise interaction and gaze-
driven stream. Kolesnikov et al., [13] proposed a joint prob-
abilistic model for detecting visual relationships. Chao et
al., [1] introduced a human-object region-based CNN ap-
proach that extends the region-based object detector (Fast
R-CNN) and has three streams: human, object and pairwise.
Further, they introduced a new large-scale human-object in-
teraction detection benchmark (HICO-DET).
Contextual Cues in Vision: Context provides an auxiliary
cue for several vision problems, such as object detection
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Figure 2. Overall multi-stream architecture of our proposed HOI detection framework comprising a localization and an interaction stage.
For localization, we follow the standard object detector [15] to obtain human and object bounding-box predictions. For interaction pre-
diction, we fuse scores from a human, an object, and a pairwise stream. We introduce context-aware appearance and contextual attention
modules in the human and object streams. Final predictions are obtained by fusing the scores from human, object and pairwise streams.

[18, 2], action recognition [27], and semantic segmentation
[4]. Recently, learnable context has gained popularity with
the advent of deep neural networks [6, 18]. Despite its suc-
cess in several tasks [19, 6, 18, 31, 14, 28], the impact of
contextual information to the relatively new task of HOI de-
tection is yet to be fully explored.

3. Overall Framework

The overall framework comprises two stages: localiza-
tion and interaction prediction (see Fig. 2). For localization,
we follow the popular paradigm of FPN [15] as a standard
object detector to generate bounding-boxes for all possible
human and object instances in the input image. For inter-
action prediction, following [1], we fuse scores from the
three individual streams: a human, an object, and a pair-
wise. Scores from human and object streams are added. The
resulting scores are then multiplied with pairwise stream.
Multi-Stream Pipeline: The inputs to the multi-stream ar-
chitecture are the bounding-box predictions from FPN [15]
and the original image. The output of the multi-stream ar-
chitecture is a detected 〈human, action, object〉 triplet. The
overall framework comprises three separate streams: hu-
man, object and pairwise interaction. Both the human and
object streams are appearance oriented; they employ CNN
feature extraction to generate confidence scores on the de-
tected human and object bounding-boxes. The pairwise in-
teraction stream encodes the spatial relationship between
the person and object as in [1].

3.1. Proposed Human/Object Stream

The standard multi-stream architecture encodes
instance-centric (bounding-box) appearance features in

the human and object streams and ignores the associated
contextual information. In this work, we argue that the
bounding-box appearance alone is insufficient and that
the contextual information in the vicinity of a human
and object instances provides complementary information
useful to distinguish complex human-object interac-
tions. We therefore enrich the human and object streams
(see Fig. 3) with contextual information by introducing
contextually-aware appearance features fapp (sec. 3.1.1).
These contextual appearance features fapp are then fed into
the contextual attention module (sec. 3.1.2), where they
are used to modulate the global feature map A to obtain
a modulated feature representation Fm. The modulated
feature representation Fm is further refined in the attention
refinement block to obtain the refined modulated features
Fr, which further passes through global average pooling
to obtain refined modulated vector fr. Subsequently, both
representations fapp and fr are concatenated to obtain
action predictions from the human/object streams. Note
that the same architecture is employed for both the human
and object streams. Thus, the only difference between the
two streams is their inputs, which are human and object
bounding-box predictions, respectively. Next, we describe
different components of our proposed human/object stream.

3.1.1 Contextually-Aware Appearance Features

Given the CNN features (Res5 block of the ResNet-50
backbone) of the whole image, as well as human/object
bounding-box predictions from the detector, standard
instance-centric appearance features are extracted by em-
ploying region-of-interest (ROI) pooling followed by a
residual block and global average pooling. Though theoreti-
cally the image-level CNN features used in the construction
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Figure 3. On the left (a), the proposed overall human/object stream. Both the contextual attention module (b) and the attention refine-
ment block (c) are shown on the right. The context-aware appearance module produces contextual appearance features that encode both
appearance and context information. The contextual appearance features are then fed into the contextual attention module to suppress the
background noise resulting in a modulated feature representation. The modulated feature representation is further enriched in the atten-
tion refinement block to obtain refined modulated features. Consequently, both contextual appearance and refined modulated features are
concatenated to obtain action predictions from the human/object stream.

of the standard appearance representation are supposed to
cover entire spatial image extent, their valid receptive field
is much smaller in practice [30]. This implies that the larger
global scene context prior is ignored in such a standard ap-
pearance feature construction. Our context-aware appear-
ance module is designed to capture additional context in-
formation and consists of context aggregation and local en-
coding blocks (see Fig. 3(a)).

The context aggregation block aims to capture a larger
field-of-view (FOV) to integrate context information in
instance-centric appearance features, while preserving spa-
tial information. A straightforward way to capture a larger
FOV is through a fully connected (FC) layer or cascaded
dilated convolutions. However, the former collapses spa-
tial dimensions, while the latter produces sparser features.
Therefore, our context aggregation block employs a large
convolutional kernel (LK) previously used for semantic seg-
mentation [19]. To the best of our knowledge, we are the
first to introduce a large kernel-based context aggregation
block to construct contextual appearance features for the
problem of HOI detection. The input to the context aggre-
gation block is the CNN features (Res5 block) of the im-
age with size h × w × cin, where cin denotes the number
of channels and h and w denote the input feature dimen-
sions. The output of the context aggregation block is then
context-enriched features of size h × w × cout, obtained af-
ter applying a large kernel of size k×k to the original CNN
features. In this work, we utilize the factorized large kernel,
which is efficient as its computational complexity and num-
ber of parameters are only O(2/k), compared to the trivial
k × k convolution.

Beside context aggregation, our context-aware appear-
ance module contains a local encoding block. Existing HOI

detection approaches employ standard ROI warping, which
involves a max-pooling operation performed on the cropped
ROI region. Our local encoding block aims to preserve
locality-sensitive information in each bounding-box ROI re-
gion by encoding the position information with respect to a
relative spatial position. Such a strategy has been previ-
ously investigated to encode spatial information within ROI
regions in the context of generic object detection [3]. How-
ever, [3] directly employs a 1 × 1 convolution on the stan-
dard CNN feature map (Res5). Instead, we encode locality-
sensitive information in each ROI region based on the con-
textualized CNN feature map obtained from our context ag-
gregation block. Further, [3] utilizes PSRoIpooling with av-
erage pooling. Instead, we employ the PSRoIAlign together
with max-pooling. PSRoIAlign is employed to reduce
the impact of coarse quantization caused by PSRoIpooling
through bilinear interpolation. Fig. 4 shows the impact of
PSRoIAlign-based local encoding on the input feature maps
of an image. Consequently, the output of the local encod-
ing block is flattened and passed through a fully-connected
layer to obtain conextual appearance features fapp.

3.1.2 Contextual Attention

The contextual appearance features, described above, en-
code both appearance and global context information. How-
ever, not all background information is equally useful for
the HOI problem. Further, integrating meaningless back-
ground noise can even deteriorate the HOI detection per-
formance. Therefore, a careful identification of useful con-
textual information is desired to distinguish subtle human-
object interactions that are difficult to handle otherwise.
Generally, attention mechanisms are used to highlight the
discriminative features particularly important for a given
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task [25]. The contextual attention module in our hu-
man/object stream consists of bottom-up attention and at-
tention refinement components. The bottom-up attention
component is based on the recently introduced approach of
[6] for action recognition and exploits a scene-level prior
to focus on relevant features. Note, [6] computes image-
level attention, whereas we aim to generate bounding-box
based attention. Further, contrary to standard appearance
features, the bottom-up attention maps in our attention mod-
ule are generated using contextually-aware appearance fea-
tures fapp (sec. 3.1.1) that encode both appearance and con-
text. We generate modulated features by first constructing a
contextual attention map, which is then deployed to modu-
late the input CNN feature map (see Fig. 3(b)).

Specifically, we project the input (Res5) feature maps
f using a 1×1 convolution onto a 512-dimensional space,
denoted as A. Then, we compute the dot product be-
tween these projected global features A and contextual-
appearance features fapp to obtain an attention map, which
is then used to modulate A, such that,

Fm = softmax(fapp ⊗ A) ⊗ A (1)

Here, Fm are the resulting modulated features. The dis-
criminative ability of Fm is further enhanced in the attention
refinement block, which consists of spatial and channel-
wise attention refinement. The attention refinement block
is simple and light-weight (see Fig. 3(c)). During spatial
refinement, we first apply a 1×1 conv on modulated fea-
tures Fm to generate a single-channel heatmap H , followed
by a softmax-operation-based normalization. Then, we per-
form an element-wise multiplication between the normal-
ized heatmap and the modulated features Fm. The resulting
spatial refinement Satt learns the most relevant features as:

Satt(Fm) = H ⊗ Fm (2)

Beside spatial refinement, we also perform a channel-
wise refinement. Inspired by the squeeze-and-excitation
network (SENet) of [12], we first apply global average pool-
ing on the modulated features Fm to squeeze global spatial
information into a channel descriptor z. Then, the excita-
tion stage is a stack of two FC layers, followed by a sigmoid
activation with input z and is described as:

Catt(Fm) = σ(W1δ(W2z)) (3)

Here, z is the output of the squeeze operation, and W1

and W2 refer to fully-connected operations. δ and σ are
ReLU and sigmoid activations, respectively. Finally, Catt

modulates the spatially-attended features Satt to further
highlight regions relevant to human-object interaction to ob-
tain a refined modulated feature representation Fr as:

Fr = Satt(Fm) ⊗ Catt(Fm) (4)

Figure 4. Visual depiction of the local encoding block that pre-
serves locality-sensitive information. For illustration purposes, the
detected human bounding-box is divided into 3×3 sub-regions and
there are 9 score maps. Each sub-region votes for the presence of
a specific object part, relative to the position of the object, based
on how good the bounding-box overlaps with the score maps.

Finally, the refined modulated features Fr are passed
through global average pooling to obtain the refined modu-
lated vector fr. We combine contextual appearance features
fapp and the refined modulated vector fr to produce the fi-
nal representation x. This representation x is then passed
through two FC layers to estimate action predictions from
the human/object stream, respectively. Given an HOI pre-
dicted bounding-box, the final prediction is obtained by fus-
ing the scores from the human, object and pairwise streams.

4. Experiments
4.1. Dataset and Evaluation Protocol

V-COCO [11]: is the first HOI detection benchmark and
a subset of popular MS-COCO dataset [16]. The V-COCO
dataset contains 10,346 images in total, with 16,199 human
instances. Each human instance is annotated with 26 binary
action labels. Note that three action classes (i.e., cut, hit,
eat) are annotated with two types of targets (i.e., instrument
and direct object). It includes 2533, 2867, and 4946 images
for training, validation and testing, respectively.
HICO-DET [1]: is a challenging dataset and has 47,776
images in total, with 38,118 images for training and 9658
images for testing. There are more than 150k human in-
stances annotated with 600 types of different human-object
interactions. The HICO-DET dataset contains same 80 ob-
ject categories as MS-COCO and 117 action verbs.
HCVRD [32]: is a large-scale dataset and is labeled with
both human-centric visual relationships and corresponding
human and object bounding boxes. It has 52,855 images
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Add-on Baseline
Res5-share X X X
Context-aware appearance (sec. 3.1.1) X X
Contextual attention (sec. 3.1.2) X
mAProle 44.5 46.0 47.3

Table 1. A baseline comparison when integrating our proposed
context-aware appearance and contextual attention modules into
the multi-stream architecture. Results are reported in terms of role
mean average precision (mAProle) on the V-COCO dataset. For
fair comparison, we use the same feature backbone (Res 5 block of
ResNet-50) for both our approach and the baseline. Both context-
aware appearance and contextual attention modules contribute in
the overall improvement in HOI detection performance. Our over-
all architecture achieves a relative gain of 6.3% over the baseline.

with 1,824 object categories and 927 predicates. It con-
tains 256,550 relationships instances and there are on av-
erage 10.63 predicates per object category. We evaluate our
method on the predicate detection task, where the goal is to
perform predicate recognition given the labels and bound-
ing boxes for both object and human.
Evaluation Protocol: We use the original evaluation pro-
tocols for all three datasets, as provided by their respective
authors. For the V-COCO dataset, we use role mean Av-
erage Precision (mAProle) as an evaluation metric. Here,
the aim is to detect the 〈human, action, object〉 triplet. The
HOI detection is considered correct if the intersection-over-
union (IoU) between the human and object bounding-box
predictions and the respective ground-truth boxes is greater
than the threshold 0.5 together with the correct action label
prediction. For HICO-DET, results are reported in terms
of mean average precision (mAP). For HCVRD, we report
top-1 and top-3 results at 50 and 100 recall.

4.2. Implementation Details

We deploy Detectron [9] with a ResNet-50-FPN [15]
backbone to obtain human and object bounding-box predic-
tions. To select a predicted bounding-box as a training sam-
ple, we set the confidence threshold to be higher than 0.8
for humans and 0.4 for objects. For interaction prediction,
we employ ResNet-50 as the feature extraction backbone
pre-trained on ImageNet. The initial learning rate is set to
0.001, weight decay of 0.0001 and a momentum of 0.9 is
used for all datasets. The network is trained for 300k on V-
COCO and 1800k iterations on HICO-DET and HCVRD,
respectively. For input image of size 480 × 640, our inter-
action recognition part of the approach takes 130 millisec-
onds (ms) to process, compared to its baseline counterpart
(111ms) on a Titan X GPU.

4.3. Results on V-COCO Dataset

Baseline Comparison: We first evaluate the impact of inte-
grating our proposed context-aware appearance (sec. 3.1.1)
and contextual attention (sec. 3.1.2) modules into the hu-

Overlap thresh 0.1 0.3 0.5 0.7 0.9
Baseline 50.1 47.8 44.5 35.9 2.5
Our Approach 53.5 50.8 47.3 37.0 2.8

Table 2. Performance (in terms of mAProle) with different IoU
thresholds, used in the testing, to compare the classification capa-
bilities of our approach with the baseline on the V-COCO dataset.
The performance gap between our approach and the baseline in-
creases at lower threshold values.

Backbone Architecture Baseline Our Approach
VGG-16 42.0 44.5
ResNet-50 44.5 47.3
ResNet-101 45.0 47.8

Table 3. A comparison (in terms of mAProle) of our approach with
the baseline when using different backbone network architectures
on the V-COCO dataset. Our approach always provides consistent
improvements over the baseline using different backbones.

Methods Feature Backbone mAProle

Gupta et .al[11]* ResNet-50-FPN 31.8
InteractNet [10] ResNet-50-FPN 40.0
BAR [13] Inception-ResNet 41.1
GPNN [20] ResNet-50 44.0
iCAN [5] ResNet-50 45.3
Our Approach ResNet-50 47.3

Table 4. State-of-the-art comparison on the V-COCO dataset. *
refers to implementation of the approach of [11] by [10]. The
scores are reported in mAProle and the best result is in bold. Our
approach sets a new state-of-the-art on this dataset, achieving an
absolute gain of 2.0% over the best existing method.

man/object stream of the multi-stream architecture. Tab. 1
shows the results on the V-COCO dataset. The baseline
multi-stream architecture contains standard appearance fea-
tures from the Res5 block of the ResNet-50 backbone,
which have a size of h × w × 2048. These standard ap-
pearance features are directly passed through the classifier
to obtain the final action scores in the human/object stream,
achieving a mAProle of 44.5. The introduction of the pro-
posed contextual appearance features improves the HOI de-
tection performance from 44.5 to 46.0 in terms of mAProle.
The performance is further improved by 1.3%, in terms of
mAProle when integrating our proposed contextual atten-
tion module. Our final framework achieves an absolute gain
of 2.8% in terms of mAProle, compared to the baseline.

We further evaluate the impact of contextual information
on improving the classification capabilities of the multi-
stream architecture. This is done by selecting different IoU
thresholds in the range [0.1-0.9] used in the test evalua-
tion of interaction recognition performance. Tab. 2 shows
the results on the V-COCO dataset. At a high threshold
value (0.9), few ground-truth bounding-boxes are matched,
whereas at a low threshold (0.1) most them are matched.
Therefore, comparison at lower thresholds mainly focuses

5699

MeMAD – Methods for Managing Audiovisual Data
Deliverable 2.2

140



human object human object

iCAN Ours

input image input image human object

iCAN

human object
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Figure 5. Comparison of attention maps obtained using our approach and iCAN [5] on example images from the V-COCO dataset. Human
and object attention maps in iCAN are constructed using standard appearance features. In contrast, human and object attention maps in our
approach are constructed using contextual appearance features extracted using the context aggregation and local encoding blocks in our
context-aware appearance module. We show examples for both single and multiple human-object interactions.

hit  sports ball eat donut skateboarding read book carry suitcase 

hold and eat pizza ride bike

skiingcarry surfboard talk on the phone

cut cake throw and catch ball surf surfboard

kick ball hold suitcase 

Figure 6. Example detection results on V-COCO dataset. Each example can involve a single human- object interaction such as skateboard-
ing and eat donut or multiple humans sharing the same interaction and object - hold and eat pizza, throw and catch ball.

on the classification capabilities of our approach. Tab. 2
shows that our approach is superior in terms of classifica-
tion capabilities, compared to the baseline.

Tab. 3 shows the generalization capabilities of our ap-
proach with respect to different network architectures.
We perform experiments using VGG-16, ResNet-50 and
ResNet-101, each pre-trained on the ImageNet dataset, as
the underlying network architectures. In all cases, our ap-
proach provides consistent improvements over the baseline.
Comparison with State-of-the-art: In Tab. 4, we compare
our approach with state-of-the-art methods in the literature
on the V-COCO dataset. Among existing works, Interact-
Net [10] jointly learns to detect humans, objects and their
interactions achieving a mAProle of 40.0. The GPNN ap-

proach [20] integrates structural information in a graph neu-
ral network architecture and provides a mAProle of 44.0.
The iCAN approach [5] combines human, object and their
pairwise interaction streams in an early fusion manner us-
ing the standard appearance features and bottom-up atten-
tion strategy. Our approach sets a new state-of-the-art on
this dataset by achieving a mAProle of 47.3.

Qualitative Comparison: Fig. 5 shows comparison be-
tween the attention maps obtained using our approach and
iCAN [5] on example images from the V-COCO dataset.
Note that the attention maps in iCAN [5] are constructed
using standard appearance features. In contrast, the atten-
tion maps in our approach are constructed using contextual
appearance features generated using the context aggrega-
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eat pizza look personsit on chair sit on  chair hold cell phone work on computer 

Figure 7. Multiple interaction detection on V-COCO. Our approach detects human instance doing multiple (different) actions and interact-
ing with various objects (represented with different colors). In all cases, the detected agent is represented with the same color.

hold horse walk horse feed horse jump horse hug horse

type on laptop wear backpack sit on couch

carry suitcase hold skateboard carry person hold umbrella ride bicycle

lie on bed hold hair drier

Figure 8. Results on HICO-DET showing one detected triplet. Blue boxes represent a detected human instance, while the green boxes show
the detected object of interaction. Our approach detects various fine-grained interactions (top row) and multiple interactions (second row).

tion and local encoding blocks in our context-aware appear-
ance module. Our attention maps focus on relevant regions
in the human and object branches that are likely to contain
human-object interactions (e.g., in case of throwing frisbee
and riding bike). In addition, for both single and multiple
human-object interactions, our approach produces more an-
chored attention maps compared to the iCAN method.

Fig. 6 shows examples showing both single human-
object interactions such as skateboarding and eat a donut,
and multiple humans sharing same interaction and object –
holding and eating pizza, throw and catch ball. Fig. 7 shows
examples of a human performing multiple interactions.

4.4. Results on HICO-DET and HCVRD datasets

On HICO-DET we report results on three different HOI
category sets: full, rare, and non-rare with two different set-
tings of Default and Known Objects [1]. Our approach out-
performs the state-of-the-art in all three category sets under
both Default and Known Object settings (see Tab. 5. The
relative gain of 9.4%, 6.7%, and 9.8% is obtained over the
best existing method on all three sets in Default settings.
Fig. 8 shows results on HICO-DET. On HCVRD dataset,
iCAN achieves top-1 and top-3 accuracies at R@50 of 33.8
and 48.9, respectively. Our approach outperforms iCAN
with top-1 and top-3 accuracies at R@50 of 37.1 and 51.3,
respectively. Similarly, our approach provides superior re-
sults at R@100 (top-3 accuracy of iCAN: 49.4 vs. top-3
accuracy of ours: 51.9).

Default Known Object
Methods full rare non-rare full rare non-rare
Shen et al., [24] 6.46 4.24 7.12 - - -
Chao et al., [1] 7.81 5.37 8.54 10.41 8.94 10.85
InteractNet [10] 9.94 7.16 10.77 - - -
GPNN [20] 13.11 9.34 14.23 - - -
iCAN [5] 14.84 10.45 16.15 16.43 12.01 17.75
Ours 16.24 11.16 17.75 17.73 12.78 19.21

Table 5. State-of-the-art comparison on the HICO-DET using two
different settings: Default and Known Object on all three sets (full,
rare, non-rare). Note that Shen et al. [24], InteractNet [10] and
GPNN [20] only report results on the Default settings. Our ap-
proach achieves a relative gain of 9.4%, 6.7%, and 9.9% over the
best existing method on all three HOI sets in Default settings.

5. Conclusion

We propose a deep contextual attention framework for
HOI detection. Our approach learns contextually-aware ap-
pearance features for human and object instances. To sup-
press the background noise, our attention module adaptively
selects relevant instance-centric context information crucial
for capturing human-object interactions. Experiments are
performed on three HOI detection benchmarks: V-COCO,
HICO-DET and HCVRD. Our approach has been shown to
outperform state-of-the-art methods on all datasets.
Acknowledgments: This work was supported by the
National Natural Science Foundation of China (Grant #
61632018), Academy of Finland project number 313988
and the European Unions’ Horizon 2020 (Grant # 780069).
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