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Abstract

This deliverable describes a joint collection of libraries and tools for multimodal content
analysis created by the MeMAD project partners. These tools have been further improved
and developed during the first year of the project. The description of the components is
divided into the visual and auditory domain, and these are further subdivided into differ-
ent themes. As part of this deliverable, the open source components have been gathered
into a joint software collection of tools and libraries publicly available on GitHub. Finally,
five scientific publications are appended to the report, which describe the technological
advances related to these components that has been made so far in the project.
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1 Introduction

This deliverable describes a joint collection of libraries and tools for multimodal content
analysis from AALTO, EURECOM, INA, Lingsoft, LLS and Limecraft. The majority of the
tools reported here have been created before the MeMAD project, but have been further
developed during the first year of the project. In addition there are also tools, which have
been created specifically for the project. The tools and libraries described in the current
document are needed in the continuation of Work Packages 2, 3 and 5 and also in the task
T6.2 Prototype implementation.

In the next section, the overall requirements for the deliverable from the MeMAD
project’s Description of Action are revisited. Then, we have divided the overview into
visual and auditory domains, described in Section [3]and Section [4]respectively. Finally, we
include a summary of the components in Section|5|and describe the open source collection
of tools that forms the deliverable D2.1 in Section [6] At the end of the report, we have
included five scientific publications or their drafts that describe the technological advances
made in the project.

2 Requirements of the MeMAD project

The aim of MeMAD Work Package WP2 Automatic multimodal content analysis is to develop
further the tools and libraries that AALTO, EURECOM, INA, Lingsoft, LLS and Limecraft
already have for multimodal analysis, description and indexing of audio and video content.
These tools include speech recognition, speaker recognition and diarisation as well as
visual and audio description techniques in both uni- and multimodal domains. Developing
these automatic methods to meet the needs of the MeMAD project is the content of task
T2.1 Development of automatic tools for multimodal content analysis and comprises the
contents of this deliverable.

The software tools described here are needed both in the continuation of the work pack-
age and also in task T6.2 Prototype implementation. This report accompanies the software
components stored in a GitHub repository with brief descriptions and evaluations of their
use. The address of the GitHub repository is:

https://github.com/MeMAD-project/mmca

The means of communication between the software components are specified in Deliv-
erables D6.1, D6.4 and D6.7 Specification of the data interchange format. The software that
is used in the online MeMAD prototype demonstrator is or will be integrated in the Lime-
craft Flow system. The prototype versions will be described in Deliverables D6.2, D6.5 and
D6.8 MeMAD prototype. All software components should also work in standalone mode.


https://github.com/MeMAD-project/mmca
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3 Visual domain

For the description of the visual content of media, several technical components are
needed. In this section we report existing tools and libraries for each type of visual analysis.
We start in Section by describing the multimedia feature extraction methods used in
some of our experiments and available for experimenting in the MeMAD project. In a typ-
ical video processing pipeline, the first step is to subdivide it into separate shots which can
then be used as separate units for further analysis. Two approaches for this are presented
in Section The next analysis steps have been subdivided into general visual concept
detection (Section[3.3)), facial and person recognition (Section[3.4)) and emotion and genre
recognition (Section [3.5). Finally, at a higher semantic level, visual media content can also
be distilled into natural language sentences which aim at holistically describing the media
content. This is addressed in Section [3.6]

3.1 Visual features

The aim of visual feature extraction is to create statistical descriptors of visual content
(e.g., images or videos) that express the semantically important content of the data in
a compact or useful way. Table 1] lists features available in AALTO’s content-based mul-
timedia analysis and indexing framework PicSOM. For still images we use pre-trained
ResNet [6] Convolutional Neural Network (CNN) models, in particular ResNet-101 and
152. For video data we use a 3D CNN ResNet architecture with 152 layers [7]. We also
utilise Faster R-CNN [8]] for extracting objects and their locations in the visual scene. The
objects are categorised according the 80 object categories of the COCO database (see Sec-
tion 3.3]), and we generate an object location map encoding the rough spatial location of
these objects (“frA”). Additionally we also create a feature that discards the location data,
and encodes only the occurrence of each object type (“frB”). All the above features are
based on using pre-trained models for the Caffe C++ library [9]].

For still images, we also use a scene-type cue as a feature based on CNN features ex-
tracted for the SUN397 database (see Section [3.3)). Scene-type classifiers are designed
using Radial Basis Function Support Vector Machine (RBF-SVM) [10]], giving a score for
each of the 397 scene types.

All image features can be used also for video contents by applying them for the mid-
dlemost frame of the clip or shot. As a genuine video feature, the PicSOM system offers
dense trajectories [11]. The dense trajectories feature consists of a histogram of oriented
gradients (HOG), a histogram of optical flow (HOF), and motion boundary histograms of
x and y directions (MBHx and MBHy), which are encoded into a fixed-size vector with a
vector quantisation scheme.

Table [1| additionally mentions audio features which encode the occurrence probabilities
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abbr. feature dim. modality
rn ResNet 4096 image
frA  Faster R-CNN 480 image
frB  Faster R-CNN 80 image

s SUN397 397 image
t trajectory 5000 video
as audioset 527 audio

Table 1: Summary of the features used in our experiments.

for the 527 classes of the Google AudioSet Ontology [[12]]. Our approach, inspired by the
works of [13]] and [[14], uses a multi-level attention model.

3.2 Shot boundary detection

Shot boundary detection aims to split a video into its constituent shots. A shot is a single
uninterrupted camera take of a scene. With modern implementations, shot boundary
detection can be said to work quite well in all normal cases.

A shot boundary detection service has been implemented as part of the Limecraft Flow
system, and its output is used as a supporting process for other services on this platform.
Such services include, e.g., the alignment of generated subtitles with shot cut boundaries
and optimised user interfaces that display clip timelines by limiting representative images
to a single one per pair of shot boundaries. The algorithm is implemented in the C lan-
guage and is based on algorithms presented in [15].

For using shot boundary detection outside of the Limecraft Flow environment, the Aalto
University’s content-based indexing framework PicSOM has functionality for shot bound-
ary detection. In PicSOM, the shot boundary detection is based on detecting locally max-
imal changes in visual features extracted from the video frames. The features typically
used are ResNet-50 activations on the pool5 layer [[6] and the change of the feature values
is evaluated between video frames that are 20 frames apart in time. This normally corre-
sponds to 0.67 seconds, which has been found to be a suitable compromise between get-
ting a good recall of shot boundaries and tolerating gradual shot transitions. The feature-
wise differences are thresholded with a preset value to find only the most significant visual
changes. Finally, non-maximal suppression is applied in a window of 25 frames (typically
0.83 seconds) to ensure uniqueness of shot boundaries even in moments when the visual
scenes have many strong transitions within a short time interval.
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3.3 Visual concept detection

Visual concept detection entails labelling media content according to a fixed ontology of
concepts, such as certain objects or actions being present in the visual content. Below we
list a few central detection categories and the corresponding available datasets and their
properties.

COCO object recognition

The Microsoft Common Objects in COntext (COCO) dataset [[16] has 2,500,000 labelled
object instances in 328,000 images belonging to 80 object categories. COCO is focused on
non-iconic views (or non-canonical perspectives) of objects, contextual reasoning between
objects, and precise 2D localisation of objects. Examples of COCO concept classes include:
bottle, sofa, chair, motorbike, car, train, cow, dog, and person.

LSCOM concept recognition

The Large-Scale Concept Ontology for Multimedia (LSCOM) [17] defines a vocabulary
for annotation and retrieval of video, and has been utilised for example in the TRECVID
evaluations [[18]]. LSCOM includes more than 2000 concepts, which have been selected
by multimedia researchers and ontology specialists. There exists also a smaller set of 39
concepts called LSCOM-Lite [[19]. Around 400 of the LSCOM concepts, and all of the
LSCOM-Lite concepts have been annotated in the TRECVID 2005 development set [20],
which consists of 80 hours of video split into almost 62,000 shots. Many subsets of LSCOM
have also been annotated in later TRECVID instances, for example 346 concepts were
annotated in a collaborative annotation effort [21]] in 2011. Examples of LSCOM classes
include: sports, outdoor, mountain, road, crowd, computer/TV screen, people marching, and
explosion/fire.

Scene recognition

The SUN Scene Categorization Benchmark database contains 899 scene categories and
130,519 images[]| Out of these categories, 397 have 100 or more annotated images and
these form the SUN397 scene category set [22]]. In total SUN397 comprises of 108,754
images, and the categories are divided into a three-level hierarchy. The first level of the
hierarchy divides the categories into indoor, outdoor natural, and outdoor man-made. Ex-
amples of category division with all three levels include:

indoor — home or hotel — alcove

outdoor natural — water; ice, snow — bayou

Thttps://vision.princeton.edu/projects/2010/SUN/
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outdoor man-made — transport — airfield.

Another scene recognition dataset is the MIT Places Database [23]] which contains 434
scene categories and 10 million categorised images. The categories are inherited from the
original SUN dataset, with some minor changes. Images were downloaded using online
web search and category labels verified with crowdsourcing.

Action recognition

The Stanford 40 Action Dataset [24] contains still images of people performing 40 different
actions. The dataset contains 9532 images with 180-300 images per action category. Each
image also has an associated bounding box around the person performing the annotated
action. Examples of action categories include: riding a horse, rowing a boat, watching TV,
and using a computer.

The Google Kinetics-600 dataset [25] contains around 500,000 10-second YouTube video
clips annotated with 600 human action categories. Each action has at least 600 associated
video clips. The action categories include human-object interaction such as playing an
instrument and human-human interactions such as shaking hand or hugging.

dataset # classes | dataset size | modality | content types

COCO 80 123,287 images | people with objects

LSCOM 350 546,530 images | people, objects, actions, news topics
SUN397 397 100,000 images | scenes, locations

MIT Places 434 10,000,000 images | scenes, locations

Stanford 40 40 10,000 images | actions

Kinetics-600 600 500,000 videos | actions

audioset 527 2,000,000 audio | audio events

Table 2: A summary table of the used visual and aural concept detection methods.

3.4 Facial person recognition

People are undoubtedly an important cue when watching a video. Knowing who appears in
a video, when and where, can also lead to learn interesting patterns of relationships among
characters of a movie or a news program. In the context of MeMAD, we are interested
in generating spatial annotation. Such person-related annotations could provide ground
for value added content. Figure |1| shows an example of successful face recognition in
broadcast video stream.

There has been much progress in the last decade regarding the process of automatic
recognition of individuals. Actually, detection of faces is the first step of the process and
it is required before recognition can be performed. The Viola-Jones algorithm [26] for
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face detection and Local Binary Pattern (LBP) features [27] for the clustering and recog-
nition were the most famous until the advent of deep learning and convolutional neural
networks.

Nowadays, two main approaches are in use for detecting faces in video; both are using
CNNs. One available within the Dlib library [28] provides good performance for frontal
images but requires an additional alignment step (which can also be performed using the
Dlib library) before face recognition can be performed when dealing with unconstrained
face recognition (which is an essential requirement in generic video analysis scenarios).
The recent Multi-task Cascaded Convolutional Networks (MTCNN) [29] approach pro-
vides even better performance using an image-pyramid approach and integrates the de-
tection of face landmarks in order to re-align detected faces to the frontal position. For the
purpose of MeMAD, the MTCNN approach will be used for locating faces in video frames
and for identifying their orientation (thanks to the facial landmarks).

Having located the position and orientation of the faces in the video images, the recog-
nition process can be performed in good conditions. There are several strategies available
in the literature to achieve recognition. The basic strategy consists in building a database
of faces for each of the persons to recognise and training a classifier to perform the predic-
tion. This approach often suffers from the fact that the addition of new persons requires
to retrain the entire model. Currently, the most practical approach is to perform face com-
parison using a transformation space in which similar faces are close together, and to use
this representation to identify individuals. Such embeddings, computed on a large col-
lection of faces are available to the research community. In the context of MeMAD, two
such facial representations are being used: Openface [30] and Facenet [31]]. Both embed-
dings are leveraged for jointly predicting the identity of detected persons in video content.
This implementation based on multiple off the shelf components will be made available
on the projet’s GitHub page https://github.com/MeMAD-project/EUR-FaceRec as soon as
possible.

; E MeMAD nemad. eu

3.5 Emotion and genre recognition

Emotion recognition is an active research topic in the affective computing community.
During the last decade, emotion recognition systems have been integrated in a number of
applications across a growing number of domain fields such as cognitive science [32], clin-
ical diagnosis [33], entertainment [34], and human-machine interaction [35]]. Automatic
emotion analysis and recognition in real-world videos (i.e. in the wild) is nevertheless still
an open challenge in computer vision. One fundamental limiting factor is that there is
almost no large dataset with real-world facial expressions available for emotion recog-
nition. Other challenging factors include head pose variation, complex facial expression
variations, different illumination conditions and face occlusion.
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Figure 1: An example of face recognition for broadcast video material

Recent achievements in the field are based on the use of data coming from multiple
modalities, such as facial and vocal expressions. Indeed, each modality presents very
distinct properties and combining them helps to learn useful and complementary repre-
sentations of the data. Still, representing and fusing different modalities in an appropriate
and efficient manner is an open research question.

The extraction of visual cues for emotion recognition has received a great deal of atten-
tion in the past decade. Recently, with the rapid growth of Convolutional Neural Networks,
extracting visual features from video frames has been investigated in many emotion recog-
nition tasks and there are various pre-trained face models made available [31] 371.
However, those models are not directly suitable for video due to the lack of temporal in-
formation and to the variation of emotion expression patterns across individuals. To deal
with this issue, 3D versions of CNN have been recently proposed [38]].

Adding the audio information surely plays an important role in emotion recognition
in video. Most of the multimodal approaches mainly used hand-crafted audio features
such as the Mel Frequency Cepstrum Coefficients (MFCC) or spectrograms, with either
traditional 40] or deep classifiers. However, those audio features are very low
level (contain little or no semantic information) and are not designed for video analysis.

In the context of MeMAD, we will use a deep multimodal architecture for emotion recog-
nition where both visual and temporal information are represented using a hybrid 2D-3D
CNN architecture, while the audio information is extracted using a deep CNN that has
been trained by transferring knowledge from vision to sound [42].

Genre classification or identification from media provides important and insightful cues
about multimedia items, which can prove to be pivotal to further processing. As a result,
there has been significant effort within the text, audio, image and video communities to

10 MeMAD — Methods for Managing Audiovisual Data
Deliverable 2.1
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Figure 2: Multimodal deep genre prediction framework

extract such information automatically from the document content [43] 44, 45|, 46].

EURECOM has, in the past few years addressed the issue of movie genre classification
as part of a higher-level objective aimed at predicting media interestingness [[47, 148]. We
developed the deep framework illustrated in Figure [2| which include CNN-based visual
feature extraction followed by Long Short-Term Memory (LSTM) [49] -based temporal
dynamics modelling, as well as deep audio features extraction and learning. We trained
the separate genre classifiers (i.e. one based on visual and one based on audio features)
on a dataset of movie trailers (extended from the one proposed in [50]) assuming that the
majority of shots from a trailer are representative of the genre of the original movie. The
independently obtained probability vector outputs for visual and audio data respectively
are then averaged in order to obtain a global genre distribution for the video shots.

The results obtained show the very acceptable level of performance of the proposed
framework. Overall precision in genre prediction reaches 90%. For a more detailed cov-
erage of the approach and its results we invite interested readers to the following publi-
cation [51]. This framework will be employed within MeMAD to provide detailed genre
information at different content granularity levels (from entire program to specific shots).
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3.6 Image and video description

Image or video description entails automatically generating a short text or caption de-
scribing the visual contents using only the image or video as the input. AALTO currently
has two different Python-based software systems for caption generation. The older one,
NeuraltalkTheano, uses the Theano library whereas the newer one, DeepCaption, uses the
PyTorch library. Both are based on the “Show and tell” approach [52], but augmented
with several enhancements.

The Theano-based neural captioning system is described in our recent paper [53], and
the source code of the implementation is freely available’] The neural architecture adds
several novel properties including residual connections between the LSTM [49] layers,
and the effective usage of persistent features. Persistent features are given as an additional
input to the recurrent model at each step of the caption generation, while in the typical
setup features are used only for initialising the LSTM generator.

DeepCaption is also released as open source’| and will be the new base for our fu-
ture research in the area. DeepCaption development has been initiated during the first
year of MeMAD. The goal is to re-implement NeuraltalkTheano in a PyTorch architec-
ture that is more maintainable in the long run, and thus facilitate faster development
and experimentation. Our team reached fourth place in the description generation sub-
task of the TRECVID VTT 2018 competition, and our systems and results are described in
AALTO’s TRECVID 2018 notebook paper [2[]] which is also included in this deliverable as
Appendix[A.2] The development of our results before and after the TRECVID evalation can
be seen in Figure |3|as measured in the BLEU-4 metric. We can notice that the performance
of the DeepCaption method is close to the best performance obtained in the evaluation.
In the continuation of the MeMAD project we will adopt the techniques used by the best
performing teams.

EURECOM participated in the matching subtask of TRECVID VTT 2018. In that subtask,
participants are given videos and corresponding sentences, and their goal is to match
videos to sentences. Results are evaluated in terms of Mean Inverse Rank.

The models we designed for that task are inspired by the Word2VisualVec++ [54] ap-
proach, with some enhancements. First, we augmented visual features usually derived
frame by frame with global features using an RGB-I3D [55]], with a view to take into
account not only still objects but also actions. Second, in Word2VisualVec+ +, text pro-
cessing is done using a simple Gated Recurrent Unit (GRU) [56]. We tried to replace the
GRU by some other models. In particular, we tested the Gated Recurrent Capsules (GRCs)
that we introduced in a recent paper [57]. GRCs are an extension of GRUs, which have
been designed to attend to important words of a sentence.

%https://github.com/aalto-cbir/neuraltalkTheano
Shttps://github.com/aalto-cbir/DeepCaption
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Figure 3: The performance of the PicSOM team in TRECVID VTT 2018 task (blue bars) and its devel-
opment after the evaluation (red bars). Higher BLEU-4 score is better.

TRECVID VTT 2018 provided us with five datasets of sentences corresponding to a
dataset of videos. EURECOM ranked third in the matching subtask of TRECVID VTT 2018
for each of these five datasets. Our models and results are presented with more details in
EURECOM'’s notebook paper [[1]], which is included in this deliverable as Appendix[A.1]

4 Auditory domain

For the description of the audible content of media, several technological tools have been
made available. In general the analysis can be divided into detection and recognition of
speech, speaker identification and recognition of other audio events. In speech recogni-
tion the efforts are focused on accurate automatic transcription of relatively good quality
broadcast speech that has large vocabulary and multiple genres, which is considered most
essential for the project. The speaker identification and diarisation provides useful infor-
mation for both the video segmentation and speech transcripts. The audio segmentation
can detect active parts and separate speech and music zones. The general audio event clas-
sification assigns several potentially overlapping tags to the signal to augment the visual
features in the video description.
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4.1 Speech recognition

Lingsoft will provide the consortium with transcripts of test material from Yle data set
for gold standard evaluation of automatic speech recognition (ASR) and diarisation both
in Finnish and Swedish. The Swedish material is ready and shared with the consortium,
while the Finnish test material still needs a revision. Lingsoft provides its ASR in Finnish
and Swedish for the use in the consortium via a speech service API.

The ongoing development of Finnish ASR includes the accommodation of state of the
art neural network based acoustic modelling, improvements in the position dependency
of phonemes, and recurrent neural network language modelling (RNNLM) [58] to rescore
the first-pass decoded lattices.

The Swedish ASR has been improved by utilising thousands of hours of new audio data
extracted from the recordings of Swedish Parliament (Riksdagen) sessions. The data can-
not be shared by the consortium, but it is freely downloadable from the Swedish Parlia-
ment website https://riksdagen.se/. Transcripts of the Swedish parliament sessions
have also been incorporated into the language model and improvements have been done
to the pre- and postprocessing stages of Swedish ASR that are responsible for appropriate
shrinking and expansion of, e.g., numerals, dates and abbreviations.

The baseline Finnish and Swedish ASR systems have been evaluated against the im-
proved systems with challenging conversational multispeaker television broadcast YLE
data. The Finnish evaluation set consists of approx. 4.5 hours and Swedish approx. 5.5
hours of speakerwise presegmented audio. Word error rates (WERs) of the systems are
gathered in Table 3| Punctuation and case sensitivity have been ignored in computing the
error rates.

Table 3: Word error rates of the Lingsoft ASR system.

Language Baseline Improved Improved
+ RNNLM

Finnish 31.3 26.1 24.8
Swedish 56.0 43.2 -

We also evaluated the Finnish Lingsoft ASR system of Lingsoft with the same Finnish
evaluation set as AALTO in [4] with the baseline system achieving 12.7, improved system
10.8 and improved system with RNNLM 10.0 word error rates.

AALTO has developed a language independent ASR scheme that involves lexicon-free
language modelling based on character and other subword units and phoneme-free acous-
tic modeling based on grapheme subword units. This hybrid HMM-DNN (Hidden Markov
Model - Deep Neural Network) system using DNN language models and system combina-
tion has been described and evaluated for four languages (Finnish, Swedish, Arabic and
English) described in article [4] which is also included in this deliverable as Appendix[A.4]
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The obtained results are the best published ones for each task.

; E MeMAD nemad. eu

4.2 Speaker identification and diarisation

The task of speaker identification and diarisation is to divide the recordings into single-
speaker segments and recognize the speakers. AALTO has studied a deep learning model
for overlapping speaker detection and online speaker diarisation (Tuomas Kaseva, MSc
thesis, to be submitted). The system consists of three components. First, the voice activity
detector finds speech segments. Second, the speech segments are divided into one second
wide overlapping windows and each window is classified either for single speaker or over-
lapping speakers. Finally, the speaker embeddings are computed for each single speaker
window and utilised to recognise the speaker identities and speaker changes. In prelimi-
nary experiments the performance of the system was encouraging. The online speaker di-
arisation is mainly intended to annotate real-time speech recognition output with speaker
change information, but it may also become useful in segmenting the videos into moments
or as features in the video description system.

Lingsoft has developed a diarisation module for Finnish and Swedish The development
of the models and the integration of the module into the speech service API is still under
development. The module is based on open source software and performs fast diarisation
using a deep neural network that maps variable-length utterances to fixed-dimensional
embeddings called x-vectors [59]].

4.3 Audio event classification

INA has released an open-source audio segmentation software, which is accessible from
GitHub http://github.com/ina-foss/inaSpeechSegmenter, and packaged as a pip mod-
ule https://pypi.org/project/inaSpeechSegmenter/. This framework has attracted the
interest of a developer community: 10 watches, 64 stars and 14 forks observed on GitHub
repository in December 2018.

The software performs a three-step segmentation procedure:

e activity detection based on energy
e segmentation into speech and music zones
e segmentation of speech zones into men and women speech segments

A 20 hours long corpus was constituted and annotated, corresponding to the materials
identified as hard for the audio segmentation software realised. These materials corre-
spond to music with singing characteristics close to speech (hip hop, french variety), and
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speech occurring in very noisy conditions, together with very expressive intonations (sport
broadcasts, comics).

This corpus was used for the speech and music detection task of Music Information
Retrieval Evaluation eXchange (MIREX 2018) https://www.music-ir.org/mirex/wiki/
2018:Main_Page. 11 systems were submitted to this evaluation, and an additional corpus
was realised to evaluate challenger systems.

INA’s system was submitted to this evaluation without being trained nor tuned using the
test material: the system was implemented before collecting and annotating the corpus. It
achieved the best results for the speech detection task on both corpora [3]. The ongoing
analysis of challenger’s results is aimed at defining which material is the most challenging
for the speech analysis community; and produce systems addressing these hard cases. A
detailed technical description of INA’s system can be found in Appendix

Audio event classification refers to recognition tasks involving the assignment of one or
several labels, such as ‘dog bark’ or ‘doorbell’, to a particular audio signal. AALTO has
developed a deep learning model following the Google AudioSet ontology to select tags
for each second of audio based on the context window with selected length. The two
short demo videos are on YouTube https://www.youtube.com/watch?v=3ht2aEmn_lk and
https://www.youtube.com/watch?v=cvR3iAband8.

AALTO also participated in the challenge of DCASE 2018 Task 2 http://dcase.
community/challenge2018/. AALTO’s deep learning model and competition entry are
explained in greater detail in the associated article that was published in the DCASE work-
shop proceedings [5] which is also included in this deliverable as Appendix In the
competition the system was not ranked far below the best ones, so it can be considered
sufficiently near the state-of-the-art.

The detected tags, time codes and probabilities of the audio events will be used in the
project together with visual tags and speech recognition results as inputs to the video
description system.

5 Summary table of the software components

Table 4| contains a summary of the software components used in the MeMAD project for
multimodal content analysis and available for the project’s members. Software compo-
nents that have proprietary license are available for the MeMAD partners as software or
as a service. Those that have been identified to have a liberal licensing scheme, such as
MIT or Apache 2, are publicly available as source code in MeMAD’s GitHub page as will be
described in Section [6.
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name provider license code description

PicSOM AALTO Apache 2 C++ multimedia content analysis
framework

DeepCaption AALTO Apache 2 Python3 image and video captioning

AALTO ASR AALTO MIT speech recognition scripts us-
ing Kaldi

AudioTagger AALTO Apache 2 Python3 audio event classification

OpenNMT-py AALTO MIT Python3 multi-modal image caption
translation for WP4

statistical-tools AALTO MIT Python3 tools for creating dataset
statistics for WP5

EUR-FaceRec EURECOM | Apache 2 Python3 tools for detecting, aligning
and recognising faces in video

SpeechSegmenter INA MIT Python3 speech vs music segmentation,
speaker gender detection

Flow Shot Cut Detector | Limecraft proprietary | C subprogram of  broadcast
video production system

Lingsoft Speech Service | Lingsoft proprietary | Python3, C++, | automatic speech recognition

JavaScript

service via an API

Table 4: Software components of MeMAD related to multimodal content analysis.

6 Organisation and use of the source code repository

The MeMAD project’s GitHub area is located at:

https://github.com/MeMAD-project

The liberally licensed software components discussed in this report have been specifically
collected for the ease of installation in a repository named mmca:

https://github.com/MeMAD-project/mmca

The mmca repository currently contains the following software tools and libraries as sub-

modules:

e PicSOM - Aalto University’s multimedia analysis framework

e DeepCaption — Aalto University’s new image and video captioning program

e Speech recognition training scripts for Finnish — Used in Aalto University’s speech

recognition system

e Audio event classification program — Used to produce audio event recognitions and

features
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e Multi-modal image caption translation — Aalto University’s caption translation program
developed for the needs of MeMAD WP4

e Statistical tools for caption dataset analysis — Aalto University’s utilities for analysing
image and video captioning datasets for the needs of MeMAD WP5

e EUR-FaceRec — EURECOM’s utilities to detect, align and recognise faces in videos
e inaSpeechSegmenter — INA's program for speech segmentation

Some of the modules are physically located outside of the MeMAD GitHub project, but
theGit submodule mechanism facilitates their seamless availability from their true loca-
tions. All of the software packages can be obtained with a single operation:

git clone https://github.com/MeMAD-project/mmca.git --recursive

Each of the subdirectories created inside the mmca directory contains its own further in-
stallation and use instructions. Specifically, each package will have up-to-date instructions
for installation and usage in a file called README.md in the corresponding directory. The
licensing information of each submodule is available in a file named LICENSE.
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A Appendices

A.1 EURECOM’s TRECVID 2018 workshop paper [1]

This paper describes the models that the EURECOM team submitted to TRECVID VIT 2018
(matching subtask) and summarises their results.
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EURECOM participation in TrecVid VTI'T 2018

Danny Francis, Benoit Huet, Bernard Merialdo

October 30, 2018

Abstract
This paper describes the submissions of the EURECOM team to the TrecVid 2018 VT'T
task. We participated in the Sentence Matching subtask. Our approach is to project both
descriptive texts and videos in the same vector space through a deep neural network, and
to compare them using a cosine similarity. In particular, we compare several variants of
sentence embeddings.

1 Introduction

EURECOM participated in the Sentence Matching subtask of the TrecVid 2018 [1] Video-
to-Text (VTT) task for the first time. The approach we chose to follow was to improve the
approach of the best team of 2017 [8]. The Sentence Matching subtask of the VT'T task requires
to link videos and sentences describing these videos. Testing data is composed of 1,000 videos,
and five datasets of 1,000 sentences, each sentence corresponding to one video. For each video
and for each dataset of sentences, teams are asked to rank sentences from the closest to the
most dissimilar. Evaluation is performed on each sentence dataset using the Mean Inverse
Rank measure.

2 Owur Model

2.1 Definition of our model

As stated in Section 1, our model aims at improving the model of [8]. In [8], video embeddings
are derived as follows:

- frames are extracted every 0.5 second for each video;

- features vectors (vy, ..., v,) are derived from these frames using the penultimate layer of
a ResNet-152 [11];

- these features vectors are then fed sequentially into a GRU [6], whose hidden states
(h1, ..., hy) are concatenated to corresponding features vectors, to obtain contextualized
features vectors (s1, ..., 8n) = (v1]|h1, s Onl|hn);

- these contextualized features vectors are combined through a soft attention mechanism
to form a vector v, which is actually a weighted sum of sy, ..., Sy;

- this vector v is then projected into a vector space after two fully-connected layers with
ReLU activations, where each activation is preceded by a batch normalization.

In our model, the same process is applied for computing video embeddings. However,
before feeding v into the two fully-connected layers, we concatenated it with a vector that we
derived from the video using the last layer of an RGB-I3D [4]. Moreover, [8] used a ResNet-152
trained on ImageNet [7] whereas we used the ResNet-152 trained on ImageNet and finetuned
on MSCOCO [13] proposed by [9].

In [8], text-embeddings are derived as follows:



- three text representations are derived (one using an average of Word2Vec [14] embeddings,
a second one is a BoW representation and a third one is derived by taking the last hidden
state of a GRU) and concatenated;

- the resulting vector is then fed into two consecutive fully-connected layers following the
same process as for videos.

Regarding the text-embeddings part of our model, we tried to replace the GRU by GRCs
[10] or a bidirectional GRU. GRCs are extensions of GRUs that we proposed in [10], where we
showed that they could improve results of GRUs on multimodal matching tasks. Our model is
summarized by Figure 1.
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Figure 1: Our model. RNN can be a GRU, a GRC or a bidirectional GRU.

2.2 Training

We trained our model using a common hard-negative triplet ranking loss [9]. More formally, if v
is the embedding computed for a video, s the embedding computed for a sentence corresponding
to that video, then the loss (v, s) corresponding to the couple (v, s) is defined as follows:

l(v,s) = Igg;((max(o, a — cos(v, 8) + cos(v,3))), (1)

where « is a hyperparameter that we set to 0.2.
We used several datasets for training and validation:

- MSVD [5];
- MSR-VTT [16];

- TGIF [12] (for computer memory problems, we only used 60,000 sentence-video pairs
from TGIF);

- TrecVid VTT 2016 test data [3];
- TrecVid VTT 2017 test data [2].



Table 1: Our results in terms of Mean Inverse Rank

Runs | Subset A | Subset B | Subset C | Subset D | Subset E
Run 1 0.194 0.190 0.194 0.193 0.199
Run 2 0.197 0.197 0.197 0.184 0.204
Run 3 0.202 0.209 0.206 0.186 0.212
Run 4 0.231 0.240 0.234 0.224 0.241

Our validation set was composed of 200 videos from TrecVid VTT 2016 test data and 200
videos from TrecVid VT'T 2017 test data with corresponding sentences. Therefore, the vali-
dation set contained 400 different videos. We used MSVD, MSR-VTT and TGIF for training,
for a total of 65,782 different videos with all corresponding sentences. Eventually, we used the
remaining data from TrecVid VTT 2016 and TrecVid VT'T 2017 to form a finetuning dataset
of 3,088 videos.

We trained our models using the RMSProp method [15] with TensorFlow default parameters
and gradient clipping between -5 and 5. We first trained our model on the training set, applying
a learning rate of 0.00003 during 20 epochs (dividing the learning rate by two if validation loss
did not improve during three consecutive epochs), with mini-batches of size 25. Then, we
set the learning rate to 0.00002, and finetuned our model on the finetuning dataset during
60 epochs, dividing the learning rate by two if validation loss did not improve during three
consecutive epochs.

3 Our runs

EURECOM submitted four different runs to the VI'T Sentence Matching subtask. The runs
are numbered from 1 to 4, with the expected best runs having the highest numbers. For each
run and for each video, sentences are ranked by decreasing cosine similarity.

RUN 1 : We apply the model we described in Section 2. The RNN we used for computing
sentence embeddings was a simple GRU.

RUN 2 : This run was similar to RUN 1, but we replaced the GRU by a GRC.
RUN 3 : In this run, the GRU of RUN 1 is replaced by a bidirectional GRU.

RUN 4 : This final run is a merge of previous runs. The merge is performed by summing
the cosine similarities of the three previous runs, to obtain a new score for each sentence.

4 Results

We reported our results in Table 1. Our runs are ranked as we expected on subsets A, B, C
and E. It is not the case for subset D, as the simple GRU obtained better results than the
GRC and the bidirectional GRU.

In Figures 2-6, all results on different sentences subsets are presented. Our results are in
red. As one can see, our ensemble method did better than other methods. Our future work
will be dedicated to finding finer ensemble methods to see how results can be further improved.
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A.2 AALTO’s TRECVID 2018 workshop paper [2]

This paper summarises the experiments of AALTO’s PicSOM group in TRECVID 2018’s
Video to Text (VTIT) task. It shows the development of the DeepCaption image and video
captioning software before and after the TRECVID 2018 submission time.

MeMAD — Methods for Managing Audiovisual Data 31
Deliverable 2.1



PicSOM Experiments in TRECVID 2018

Workshop notebook paper — draft

Mats Sjoberg™, Hamed R. Tavakoli*, Zhicun Xu*, Héctor Laria Mantec6n™, Jorma Laaksonen™
T Department of Computer Science
Aalto University School of Science
P.O.Box 15400, FI-00076 Aalto, Finland

*Department of Signal Processing and Acoustics
Aalto University School of Electrical Engineering
P.O.Box 12200, FI-00076 Aalto, Finland

firstname.lastname @ aalto.fi

Abstract

This year, the PicSOM group participated only in the Video to Text (VTT), Description Generation subtask. For our submitted

runs we used either the MSR-VTT dataset only, or MS COCO and MSR-VTT jointly for training. We used LSTM recurrent

neural networks to generate descriptions based on multi-modal features extracted from the videos. We submitted four runs:

e PICSOM_1: uses ResNet features for initialising the LSTM generator, and object and scene-type detection features as persistent
input to the generator which is trained on MS COCO + MSR-VTT,

e PICSOM_2: uses ResNet and object detection features for initialisation, and is trained on MS COCO + MSR-VTT, this is the
only run based on our new PyTorch codebase,

e PICSOM_3: uses ResNet and video category features for initialisation, and trajectory and audio-visual embedding features for
persistent features, trained on MSR-VTT only,

e PICSOM_4: is otherwise the same as PICSOM_3 except the audio-visual embedding feature has been replaced with audio class
detection outputs.

The most significant difference between our runs came from expanding the original MSR-VTT training dataset by including MS

COCO, which contains images annotated with captions. Having a larger and more diverse training set seems to be bring larger

improvements to the performance measures than using more advanced features. This finding has been confirmed also by our

post-submission experiments that we are still continuing.
I. INTRODUCTION

In this notebook paper we describe the PicSOM group’s
experiments for the TRECVID 2018 evaluation [1]. We par-
ticipated only in the Video to Text Description (VTT) subtask
for Description Generation. Our approach is a variation on the
original “Show and tell” model [2], augmented with a richer
set of contextual features [3]. This year we are transitioning
from an old Theano-based neural captioning system to a new
PyTorch-based one, mainly because the new code base will
make future development and experimentation easier from a
practical standpoint. Both systems have been used to produce
the runs presented in this paper, and they are described in more
detail in Section II. Next, we describe the features (Section III)
and datasets used for training (Section IV). Our experiments,
submitted runs and results are discussed in Section V and
conclusions are drawn in Section VI.

II. NEURAL CAPTIONING MODELS

In our experiments we have used two different Python-based
software projects for caption generation. The first and older
one, NeuraltalkTheano, uses the Theano library whereas the
second and newer one, DeepCaption, uses the PyTorch library.

A. NeuraltalkTheano

The Theano-based neural captioning system is described in
our recent paper [3], and the source code of the implemen-

tation is freely available.! The neural architecture is similar
to the one proposed in [2], but adds several novel properties
including residual connections between the LSTM layers, and
the effective usage of persistent features. Persistent features
are given as an additional input to the recurrent model at
each step of the caption generation, while in the typical setup
features are used only for initializing the LSTM generator. A
full description of the method can be found in [3].

B. DeepCaption

This year we have started to develop a new PyTorch code
base, also available as open source.> The goal is to re-
implement NeuraltalkTheano in a PyTorch architecture that
is more maintainable in the long run, and thus facilitate faster
development and experimentation. So far we have not yet
implemented all the features of NeuraltalkTheano, in particular
beam search and residual connections are still missing and
have thus not been used in the DeepCaption-based result
presented here.

The features are translated to the hidden size of the LSTM
by using a fully connected layer. We apply dropout and batch
normalization [4] at this layer.

Uhttps://github.com/aalto-cbir/neuraltalk Theano
Zhttps://github.com/aalto-cbir/DeepCaption



III. FEATURES

In this section we describe the visual and auditory features
used in our experiments. Table I summarizes the features and
their dimensionalities. In the cases when an image modality
feature extraction method has been applied to a video object,
we have used the middlemost frame of the video.

TABLE I
SUMMARY OF THE FEATURES USED IN OUR EXPERIMENTS.
abbr. feature dim. modality

m ResNet 4096 image
frA  Faster R-CNN 480 image
frB  Faster R-CNN 80 image
SUN397 397 image
c category 20 image
t trajectory 5000 video
as audioset 527 audio

mm  multimodal 2048 multimodal

A. CNN

We are using two types of CNN features, one representation
for still images, including single video frames, and one for the
sequence of images, i.e. videos. Both architectures are based
on the ResNet [5] model.

Image features, we are using pre-trained CNN features
from ResNet 101 and 152. The 2048-dimensional features
from the pool5 layer average to five crops from the original
and horizontally flipped images. These features have then been
concatenated together and are referred to as “rn” in Table I
and later in this article.

Video features, on the video level, when there is a sequence
of 16 images, we are using a 3D CNN ResNet architecture
with 152 layers [6], where final fully connected layers are
removed to produce a 2048-dimensional feature vector. These
features are fed to the language model.

B. FasterRCNN

The types of objects and their locations in the visual scene
have an effect on sentence formation and influences the adjec-
tives used in human sentences. To extract this information, we
use an object detector, specifically the Faster Region-based
Convolutional Neural Network (R-CNN) [7]. This network
predicts the object locations as bounding boxes and object
detection scores of the 80 object categories of Microsoft
Common Objects in Common Context (MS-COCO) database.’
We use these object proposals to create object location maps.
We divide the image into independent m horizontal and n
vertical strips. The vertical and horizontal cells will thus
overlap and the total number of cells is m + n.

We first define a grid on the image where each of the cells,
F,(i), accumulates the integral of Gaussian distributions fit to
the object proposals of the class category c as

Fo(i)= > p(br) N (center(by,), diag(b)) , (1)
bEBB(e)”y) NG (i)

3http://cocodataset.org/

where BB(c) is the set containing bounding box object
proposals for category ¢, p(by) is the confidence assigned by
the detector to proposal by, G(i) is the grid cell at position
i and N(u,o) are Gaussians of given mean p and standard
deviation o. In our experiments we used m = n = 3 and
abbreviate these (3 + 3) x 80 = 480 -dimensional features as
“frA”.

We can further reduce the feature size by discarding the
location information completely and just encoding the object
detection scores on the image level. We obtain such an 80-
dimensional feature vector using the detection score for each
category, and refer to it as “frB”. For brevity of notation,
concatenation of “frA” and “frB” to 560-dimensional features
will be abbreviated as “frAB” in the tables below.

C. Semantic concept and category features

For still images, we use a scene-type cue as a feature to
the language model. We detect the scene-type using a bank
of specialized visual scene detectors trained on CNN fea-
tures extracted for the SUN Scene Categorization Benchmark
database.* Scene-type classifiers are designed using Radial
Basis Function Support Vector Machine (RBF-SVM) [8]. CNN
features extracted from GoogLeNet [9] pre-trained on the MIT
Places dataset (from the 3rd classification branch) is used
to train a separate classifier for each variant. Each classifier
determines the degree of association of a given image to the
397 scene types of the SUN database. Thus, for an input
image, we form a 397-dimensional feature vector consisting of
these raw scene type scores in the range of [0, 1]. This feature
vector is referred to as “s” in Table I and below.

We also utilize the video category information, available in
the MSR-VTT, as a one-hot feature vector of 20 dimensions.
For the test set we have generated the corresponding feature
by training a set of 20 category detectors and using the MSR-
VTT category information as training data. For this purpose,
we again used RBF-SVM classifiers and GoogLeNet features
extracted using an ImageNet pre-trained model. This feature

@ 9

vector is referred to as “c”.

D. Trajectory features

For encoding genuinely video content, we use trajectory
features. Dense trajectories [10] and their histogram of ori-
ented gradients (HOG), histogram of optical flow (HOF), and
motion boundary histogram x and y directions (MBHx and
MBHy) descriptors are first extracted for the entire video.
These five features are separately encoded into a fixed-size
vector using a bag-of-features encoding with a codebook of
1,000 vectors. Each codebook was obtained using k-means
clustering on 250,000 random trajectory samples from the
training set. Finally, concatenating the vector encodings of
each of the descriptors results in a video feature vector of
5000 dimensions. This feature vector is referred to as “t” in
our tables.

4https://groups.csail.mit.edu/vision/SUN/



E. Audio features

The provided audio features are the occurrence probabilities
for the 527 classes of the Google AudioSet Ontology[11].
AudioSet contains over 2 million 10-second human-labeled
soundtracks segmented from YouTube videos. Each sound-
track can have multiple labels such as “acoustics guitar” or
“door bell”. Instead of providing the original audio files,
AudioSet gives compact 128-dimensional embeddings which
are the output of a modified VGG model, namely VGGish, for
the log-mel spectrogram of audio with around a length of one
second. Thus the dimension of the training data is 10 x 128
after being fed into the VGGish.

Inspired by the work [12] and [13], we built a similar multi-
level attention model for the 10-second audio classification
and achieved a mean average precision of 0.344. Since the
length of the audio files in TRECVID are around 6 seconds,
we decided to concatenate the same audio twice or more times
and then truncated the extra parts to match the 10-second
requirements. Finally, the modified 10-second audios are fed
into a multi-level attention model to get the probabilities. This
feature vector is referred to as “as” in Table I and below.

FE. Multimodal features

To encode audiovisual information, we adopted a joint
embedding space based on the ResNet [5] deep neural ar-
chitecture. The architecture has two branches, one for audio
and one for video. The audio branch consists of 7 residual
convolution blocks and accepts a log spectrogram as input. The
log spectrogram, corresponding to one second of audio data, is
processed into a vector of 2048 prior to the combination with
the video data by going through two fully-connected layers.
On the video branch, we use the video features described in
Section III-A. The output of the audio branch is used to re-
weight the video branch weights. These combined responses
are then fed into another fully connected layer, producing a
vector of size 2048.

For training we borrow the weights for the video branch
from pre-trained models of [6], which are trained on the
kinetics database [14]. For the audio part, we train our network
on the speech commands database [15] and then, borrow
the weights from this model. The audio-visual embedding is
then trained on an auxiliary task, namely action recognition.
Afterwards, the obtained feature representations from this new
architecture, referred to as “mm” in Table I, are used for
multimodal caption generation.

IV. TRAINING DATA

Here we describe the datasets used for training our caption-
ing models. Table II gives a summary of the databases and the
features we have extracted for them. In Tables II and III, we
have shortened the dataset names with one letter abbreviations.

A. COCO

The Microsoft Common Objects in COntext (MS COCO)
dataset [16] has 2,500,000 labeled instances in 328,000 im-
ages, consisting on 80 object categories. COCO is focused on

TABLE 11
SUMMARY OF THE TRAINING DATASETS USED IN OUR EXPERIMENTS.
dataset items captions features
C COCoO 82,783 img 414,113 rn frAB s
Ca COCO-all 123,287 img 616,767 rn frAB s
M MSR-VTT 6,513 vid 130,260 1 frAB s ¢ t as mm
T TGIF 125,713 vid 125,713 1n frAB s
V  MSVD 1,969 vid 80,800 rn frAB s
L LSMDC 108,536 vid 108,536 r frAB s

non-iconic views (or non-canonical perspectives) of objects,
contextual reasoning between objects, and precise 2D local-
ization of objects.

We used COCO either with only 2014 training data “C” or
with also 2014 validation data “Ca”.

B. MSR-VIT

The MSR-Video to Text (MSR-VTT) dataset [17] provides
10,000 web video clips with 41.2 hours and 200,000 clip-
sentence pairs in total, covering a comprehensive list of 20
categories and a wide variety of video content. Each clip
was annotated with about 20 natural sentences. Additionally,
the audio channel is provided too. It is intended to foster
spatio-temporal information modelling and pooling strategies
in video data, as well as make a broader range of domains
available as opposed to previous datasets.

C. TGIF

The Tumblr GIF (TGIF) dataset [18] contains 100,000
animated GIFs and 120,000 natural language sentences. This
dataset aims to provide motion information involved between
image sequences (or frames). Authors explain that focusing
on a limited series of still frames, often without narrative or
need for context, and always without audio is an easier step
towards full video understanding.

D. MSVD

The Microsoft Research Video Description Corpus
(MSVD) [19] consists of 85,000 English video description
sentences and more than 1,000 for a dozen more languages.
Gathering efforts for this dataset presented early crowd-
sourcing methodologies for video annotation. It contains a
set of 2,089 videos, showing a single, unambiguous action or
event. Additionally, descriptions of the same video segment
can then be used as translation data if they are in different
languages.

E. LSMDC

The Large Scale Movie Description Challenge
(LSMDC) [20] 2015 consists of 108,536 short, approximately
10 second snippets of movies. Each of the snippets is
associated with a genuine audio description (AD) line aimed
for visually handicapped audiences and extracted from the
DVD. This dataset has all references to named persons
replaced with “SOMEONE” to avoid some problems in
evaluating the accuracy of the generated captioning.



V. EXPERIMENTS AND RESULTS

During the development stage, we ran a number of experi-
ments to select the best combinations of features and training
data. We evaluated our results using the previously released
TRECVID VTT 2016 test set. For the NeuraltalkTheano
system (abbreviated as “nt” in Table III), the beam size in the
caption generation stage was varied and it was found out that
the models consistently performed best with beam size equal
to one. For this reason we did not yet implement beam search
for the DeepCaption system (abbreviated as “dc” in Table III),
instead we used a simple greedy selection approach equivalent
to having beam size one.

With the NeuraltalkTheano system we first tried using either
only the COCO training data or only the MSR-VTT training
data. These are seen as runs “b3” and “b4” in Table III,
respectively. With the MSR-VTT training data we were also
able to experiment with the multimodal “mm” and audioset
“as” features, which was not possible with the image-only
COCO data. These experiments are seen as submissions “s3”
and “s4” in the result table, respectively. The best results
with the 2016 testing data were obtained when the COCO
and MSR-VTT data were used together by using only the
visual modality and the middlemost video frames of the latter
dataset. We regarded this as our overall best result when
evaluated as the CIDEr score on the 2016 testing data and
submitted it as “s1”. For all our NeuraltalkTheano experiments
we varied the combinations of the used features for the LSTM
model initialization and for the persistent features. The feature
combinations shown in Table III provided the best results on
the 2016 testing data. We also varied the beam search size, but
without an exception, the best results were always obtained
with the beam size equal to one.

Based on evaluation on the TRECVID 2016 test set, we
ended up using a 2-layer LSTM for DeepCaption with an
embedding vector size of 512 and 1024 for the hidden state
dimensionality. Exceptionally the runs “al” and “a2” use 1024
for the embedding vector, which seems motivated as well by
the larger dimensionality of the input features. Both in the
input translation layer and in the LSTM we applied a dropout
of 0.5. We used centered RMSprop [21] with a learning rate
of 0.001 and weight decay (L2 penalty) of 1075,

All experiments are briefly summarized and their results
presented in Table III. The four “setup” columns specify the
captioning model (nt=NeuraltalkTheano, dc=DeepCaption),
the initializing and persistent features, and the datasets used
in the LSTM model training.

The features are concatenations of the following:

rn = ResNet, see III-A

frA = Faster R-CNN 480-dim, see III-B

frB = Faster R-CNN 80-dim, see 11I-B

s = SUN397, see III-C

¢ = Category of 20 video genres, see III-C
t = Trajectory, see III-D

as = Audioset, see III-E

mm = MultiModal, see III-F

The used datasets are concatenations of the following
datasets, each described in one of the subsections of the
previous section:

C = COCO, see IV-A
M= MSR-VTT, see IV-B
T = TGIF, see IV-C

V = MSVD, see IV-D

Our results compared to those of the other submitted runs
are visualized with bar charts for each automatic performance
measure in Figures 1-5.
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VI. CONCLUSIONS

The most practical conclusion for our group’s internal use
is that we have been successful in replacing our old Theano-
based captioning system with a new PyTorch-based one that
has overtaken the old system in performance.

Compared to the level of performance reached by some
of the other research groups we are, however, still clearly
behind. We will still need to continue our efforts to improve
the evaluation scores obtained by our DeepCaption system.



TABLE III

RESULTS OF OUR SUBMISSIONS (S1,..., S4) AND SOME NOTEWORTHY PRE (B1,..., B4) AND POST (Al AND A2) EXPERIMENTS.
setup 2016 2018
id | mod init pers data METEOR CIDEr | METEOR CIDEr CIDErD BLEU STS
bl | dc m - C+M 0.2135 0.2620 0.1513 0.1584  0.0471  0.0110
b2 | dc m+frAB - C+M 0.2186 0.2872 0.1515 0.1714  0.0475  0.0082
b3 nt rn+c t M 0.2005 0.2379 0.1415 0.1495  0.0364  0.0051
b4 | nt m frAB+s C 0.1890 0.1907 0.1675 0.1808  0.0641  0.0091
sl nt m frAB+s C+M 0.2147 0.2886 0.1488 0.1720  0.0450  0.0053 0.3806
s2 | dc rn+{rB - C+M 0.2214 0.2750 0.1540 0.1660  0.0480  0.0091 0.3739
83 nt rn+c t+mm M 0.2039 0.2437 0.1468 0.1520  0.0390  0.0055 0.3676
s4 | nt rn+c t+as M 0.2021 0.2413 0.1464 0.1590  0.0400  0.0048 0.3713
al dc  rn+rAB+s - C+M+T 0.2238 0.3158 0.1562 0.1910  0.0525 0.0122
a2 | dc  rm+frAB+s - C+M+T+V 0.2300 0.3080 0.1654 0.1984  0.0653  0.0166
a3 | dc m - C+T 0.2343 0.2997 0.1776 0.1948  0.0700  0.0197
a4 | dc m - Ca+M+T+V 0.2191 0.3070 0.1558 0.2007  0.0543  0.0169
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Comparing the results we obtained by using the 2016 VTT
test data and those obtained with this year’s test data, we

can draw two conclusions. First, this year’s results seem to
be clearly worse than those of 2016. This will need further

36

Fig. 5. STS results of our group and others.

studies as the number of reference captions has increased from
two to five, which in general should have had the opposite
effect on the results. Second, it seems that we were not able
to choose the best-performing models among the variants we
experimented with, based on the evaluation scores with the
2016 data.

The pre-submission results obtained by using only the
COCO training data now seem to be very competitive. In
general, however, our results indicate that using more training
data, even with only one image frame for each training set
video, is more beneficial than using genuinely video, audio or
multimodal features. We will continue this path of experiments
further for the final version of this report.
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A.3 INA’s MIREX 2018 workshop paper [3]

This paper summarises INA’s system for the MIREX 2018 music and speech detection chal-
lenge. INA's submission received the top result in the evaluation.
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ABSTRACT

A convolutional neural network (CNN) based architecture
is proposed for MIREX 2018 music and speech detection
challenge. The system uses log-mel filterbank features. It
has 4 convolutional and 4 dense layers. It is part of the
inaSpeechSegmenter open-source framework, which was
designed for conducting gender equality studies.

1. INTRODUCTION

This paper presents the system submitted to Mirex 2018
Speech and/or Music detection task. This system is based
on the inaSpeechSegmenter open-source framework
(MIT license) [4]. The full framework is available on GitHub !
and is packaged as a python3 pip module 2.

It was designed for conducting digital humanities stud-
ies describing men and women speaking-time ratios across
TV and radio channels. These large-scale descriptions were
used as an estimate of gender equality in medias [3, 5].

The framework is composed of two segmentation mod-
ules. The first module, which was used for the speech
and/or music detection task, is in charge of segmenting
audio stream into speech and music. The system was de-
signed for segmentation rather than detection. With respect
to the aim of this framework (estimating men and women
speech-time ratio), speech-over-music is labeled as speech.
Therefore, this module is better suited for speech than for
music detection. The second module of the framework (not
evaluated in this challenge) is in charge of splitting and
labeling the resulting speech segments according to their
corresponding gender class.

2. ALGORITHM

The processing pipeline is composed of 4 main steps de-
scribed in the following subsections.

2.1 Signal Activity detection

A baseline activity detection system — based on adaptive
energetic threshold — is used. The threshold is defined as

"https://github.com/ina-foss/
inaSpeechSegmenter
2https://pypi.org/project/inaSpeechSegmenter/
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the log(3%) of the mean log energy found in a given sound
file. Filtering procedures are then used to obtain the seg-
ments showing activity from these frame-level activity es-
timates.

2.2 Feature extraction

The Mel-scaled filter-banks representation of the signal is
computed on 25ms sliding windows with 10 ms shift using
SIDEKIT [7]. 21 Mel filterbanks sampled between 100
and 4000 Hz are extracted. This rather low maximum fre-
quency limit was chosen to handle low-quality signals that
may occur in TV and radio streams: i.e., telephone-quality
signal with no energy above 4000 Hz.

Resulting features were grouped into patches concate-
nating 68 adjacent windows. Patches were normalized to
have 0 mean and unit variance, in order to increase the ro-
bustness to volume variations between recordings.

2.3 CNN frame-level detection

Figure 1 shows the CNN architecture used for speech-music
discrimination, which was implemented using Keras [2].
The CNN input is composed of patches of dimension 68 x
21 (time x feature dimension), accounting for an input
analysis window of 695 ms. The model has 4 convolu-
tional and 4 dense layers. All these layers are followed
by a batch-normalization stage and ReLU activation lay-
ers. The dense layers are also followed by dropout lay-
ers, with dropout rates increasing according to the network
depth. The first convolutional layer is associated with the
biggest width (5), in order to capture the horizontal pat-
terns typically found in music signals. The last pooling
layer operates on the temporal dimension, in order to focus
on the pattern showing the biggest activation in this rela-
tively large time-interval. The output is implemented using
a softmax activation layer, allowing to obtain a probability
estimated for each supported class (i.e., speech, music).

2.4 Viterbi decoding

The CNN output is composed of instantaneous frame-level
probabilities for speech and music. These probabilities are
used to feed a 2-states Hidden Markov Model, aimed at
inferring the most likely sequence of hidden states from
these frame-level estimates. State transition probabilities
were defined empirically through a grid-search procedure
performed on development datasets (section 4).
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A.4 AALTO’s submitted journal article [4]

This paper describes AALTO’s state-of-the-art hybrid HMM-DNN ASR methods that are
particularly useful for developing ASR systems for low-resource languages with complex
morphology. The system is evaluated here for Finnish, Arabic, Swedish and English.
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Abstract We describe a novel way to implement subword language models in
speech recognition systems based on weighted finite state transducers, hidden
Markov models, and deep neural networks. The acoustic models are built on
graphemes in a way that no pronunciation dictionaries are needed, and they can
be used together with any type of subword language model, including character
models. The advantages of short subword units are good coverage, reduced
data sparsity, and avoiding vocabulary mismatches in adaptation. Moreover,
constructing neural network language models (NNLMs) is more practical for
small input and output layers. We also propose methods for combining the
benefits of different types of language model units by reconstructing and
combining the recognition lattices. We present an extensive evaluation of
various subword units on speech datasets of four languages: Finnish, Swedish,
Arabic, and English. The results show that the benefits of short subwords
are even more consistent with NNLMs than with traditional n-gram language
models. Combination across different acoustic models and language models
with various units improve the results further. For all the four datasets we
obtain the best results published so far. Our approach performs well even for
English, where the phoneme-based acoustic models and word-based language
models typically dominate: Combination of several grapheme-based models
provides 4% improvement over phoneme-based baseline, and combining both
grapheme and phoneme models yields the state-of-the-art error rate of 15.9%
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for the MGB 2018 dev17b test. For all languages we also show that the language
models perform reasonably well with limited training data.

Keywords Large vocabulary speech recognition - Subword units - Character
units - Recurrent neural network language models

1 Introduction

The term large vocabulary continuous speech recognition typically refers to
speech recognizers operating on tasks that have a broad domain and cover
the majority of regularly used words. Implicitly, it also assumes that a speech
recognition system has a vocabulary which must be large to sufficiently cover
the language used. Originally, the term also implies that the vocabulary consists
of words, similarly as how the vocabulary is treated in linguistics, except that
often the surface forms of the words are used explicitly.

Unfortunately, even the largest vocabularies limit the use of words into the
listed ones. However, it is not possible to create an exhaustive list of words,
because all training data is also limited and languages evolve with new words
appearing and old words being forgotten. In speech recognition, the coverage
of the vocabulary is often measured by the out-of-vocabulary rate. It is the
proportion of words that are not present in the vocabulary and thus cannot be
recognized correctly.

For morphologically rich languages, such as Finnish, attempts to make a
vocabulary to cover a sufficient part of the language is even more problematic.
Word formation by derivation and compounding produces a massive number
of lexical words, and inflectional processes further create a large number of
variations requiring dozens or more surface forms to cover a single lexical word.

In the context of these problems, subword-based speech recognizers have
been developed to cope with unlimited (or open) vocabulary tasks [5,14].
Instead of words, the vocabulary contains morphemes, syllables, or other
subword units that together can be used to create an unlimited amount of word
forms. If the units have been appropriately chosen, all words in the language
can be generated and modeled by the system. This would include words not
seen in the training data or even words that might not even have existed yet at
the time the system is created. One step further is to create a vocabulary-free
system based only on characters. These systems have full freedom to predict
any word, as long as it can be written by the characters known to the system.

A subword or vocabulary-free system also has drawbacks. Some languages,
such as English, have strong pronunciation variations in words and character
sequences, which are hard to model on the subword or character level. While
this could be solved by finding and introducing the relevant pronunciation
variants in the pronunciation dictionary for subwords, we take here a phoneme-
free approach and build the acoustic models directly for graphemes. Another
drawback is that during decoding, the unlimited vocabulary systems also
consider many non-words and thus have a larger search space.
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Besides in Hybrid HMM-DNN based systems, the character and subword-
based language models are also relevant for the Connectionist Temporal Classifi-
cation (CTC) or other ‘end-to-end‘ style models. Although the latest end-to-end
systems perform very well, the Hybrid HMM-DNN systems are often still the
preferred choice. This is, for example, the case when separate language models
are needed, or when much more text data is available than audio data. Espe-
cially in low-resource situations this is often the case. However, the end-to-end
systems do use subword and charater-based models for much of the same
reasons, including the size of layers in the neural networks as well as the more
effective use of training data. Like in our systems, the grapheme-based acoustic
models are also relevant for end-to-end models and often are the preferred
choice [33,31].

In the following sections, we describe how we created effective subword and
character based models in a conventional speech recognition system, where
the acoustic and language models are trained separately. We introduce the
concepts needed to implement subwords correctly in a weighted finite state
transducer (WFST) based recognizer and the considerations needed to train
both conventional n-gram language models as well as modern recurrent neural
network language models. Besides merely testing systems with different units,
we also propose, implement, and evaluate system combinations that combine
models composed of different units.

The experiments are repeated on benchmarks covering four different lan-
guages from three different language families with different vocabulary sizes
and morphological complexities. For all of these four speech datasets we obtain,
to the best of our knowledge, the best results published so far. The motivation
for this work came from the improvements we obtained by developing the new
subword WFSTs [37], character-based language models [36] and then winning
the 2017 multi-genre broadcast speech recognition challenge by combining
systems operating on different subwords [35]. While some of the ideas were
initially presented in these conference papers, they have now been extended and
analyzed in detail here. All the results are entirely new and the tasks include
also Swedish and English, for which such methods have not been proposed
before.

In summary, the main novelty in this work is the set of tools and techniques
for successful subword modeling for WFST-based hybrid DNN-HMM speech
recognition using graphemes instead of phonemes. In addition, it includes a
thorough evaluation across four diverse languages as well as an evaluation
of these techniques in an under-resourced scenario. Moreover, it explores the
usage and considerations in using subword and character based neural-network
language models for hybrid DNN-HMM systems. Lastly, it introduces and
evaluates the tools for doing lattice combination across different language
modeling units, allowing, for example, Minimum Bayes Risk decoding with a
larger variety of models.



4 Smit et al.

Table 1 Four methods of marking subword units so that the original word sequence ‘two
slippers‘ can be reconstructed

Style (abbreviation) ‘ Example

boundary tag (<w>) | <w> two <w> slipp er s <w>
left-marked (+m) | two slipp +er +s
right-marked (m+) | two slipp+ er+ s
left+right-marked (+m+) | two slipp+ +er+ +s

2 Subword modeling for ASR

Subword modeling has been used for almost twenty years in speech recognition.
For some languages, such as Arabic, it has been popular to use linguistic
units such as morphemes as the basic language modeling unit [7,18,26]. For
other languages, such as Finnish, the subword segments are often created
with data-driven methods [14,8]. Multiple data-driven methods for subword
segmentation have been used in speech recognition. In [37] we have shown that
if the parameters and context length for the language model are optimized to
a comparable level, the actual segmentation method has only a minor effect on
the speech recognition performance.

Not only do these systems need a subword segmentation, but also to
reconstruct words back from the subword units. This can be done by e.g.
adding a dummy unit to mark a word boundary, or by creating different
subword variants based on the location in a word. The first subword systems
often used a separate word boundary marker [15] or a continuation marker
attached on the left side of the subword when there is no word boundary [4,40].
In [37] we showed that the selected marking style can actually have a profound
effect on the speech recognition result and that the optimal marking style often
depends on the data set. Table 1 shows a list of the common marking styles,
as well as the corresponding abbreviations used in this paper.

After segmenting the training texts into subwords, conventional tools can
be used for training the language models by treating the marked subwords as
independent words. Only when the word-based perplexity is calculated, the
actual reconstructed words need to be accounted for. If the word boundary tags
(<w>) are used for that, these tags will be treated as normal tokens which
have their own probability. This is necessary to predict the word boundaries
correctly, otherwise any location of word boundary tags would be as likely.

In this work we design our subword modeling in such way that it is indepen-
dent from the acoustic model. The acoustic model can be trained on sequences
of phones (or graphemes), and any type of language model can be used with it,
whether it is using characters, other subwords, or words.

2.1 Pronunciation lexicon

In a traditional speech recognition system, the vocabulary is directly linked
with the pronunciation lexicon. For languages such as English, where the
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pronunciation is not based on rules, often hand-crafted lexicons that map each
word to the correct phoneme sequence are used. Typically, most words include
only a single or only a few pronunciations.

When words are split into subwords, it is not always clear what the pro-
nunciation of each subword is. A word can have more or fewer phonemes than
graphemes, and the relation that might be obvious to humans might be hard to
determine algorithmically. Many subwords will also have multiple pronunciation
variants. Moreover, many subwords will share the same pronunciation sequence,
which increases the complexity of the recognition process.

One solution to this problem is to use grapheme-based units instead of
phonemes, and let the acoustic model learn the pronunciation patterns from
the training data. In languages that are highly phonemic, e.g. Finnish, this is
a natural thing to do. For languages that have a more irregular pronunciation
pattern, e.g. English, this is more complicated, because the acoustic model
must learn the pronunciation of characters based on their context. In Gaussian
mixture model (GMM) based acoustic models, the phoneme-based recognizers
outperform the grapheme-based ones for English by margins as big as a 50%
relative increase in word error rate (WER) [23]. However, a recent work [42]
shows that modern deep neural network (DNN) acoustic models can learn
the English pronunciations better, and the difference between phoneme and
grapheme-based recognizers can be as low as 5% relative WER. Also, the
modern sequence-to-sequence trained recognizers often predict graphemes
directly without using a separate pronunciation lexicon [30].

In this work, we used grapheme-based acoustic models for all languages,
which solves the problem of generating pronunciations for all subwords.

2.2 Subword modeling in WFST based speech recognition

In the weighted finite state transducer (WFST) framework [24] a decoding
graph is created by the composition of four different FSTs, abbreviated with
the term HCLG. The H-FST maps HMM states to context-dependent phones,
the C-FST maps these to context independent phones. The L-FST (lexicon)
maps the phone sequences to words and the G-FST scores the sequences of
words with a language model.

If there would be no other phones than those present in words, these
FSTs could be used for subword systems without modifications. However,
there are two common extensions made to the lexicon FST, which do have
an impact on subword models. First, the lexicon FST often allows optional
silence phones to be inserted between words and on the beginning and end
of the utterance. However, in subword FSTs, there cannot be any silence
phones between subwords that belong to the same word. Second, in words,
different phoneme-variations are used depending on the location, e.g. whether
the phoneme is the first or last one in a word. To take this into account, also
the subword FSTs must be aware of their position in the current word.
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Fig. 1 The original lexicon FST (top) and the subword-modified lexicon FST (bottom).
The labels on the arcs show the input:output label for each transition. e represents the empty
symbol. Labels starting with ’#’ are dummy labels that are used for keeping the FSTs
deterministic (a requirement in the Kaldi toolkit). Labels that start with $ are replaced with
linear FSTs containing the actual pronunciations of the applicable words.

Fig. 1 shows how the lexicon FST can be created in such a way that
these properties still hold for subword-based systems. The subword lexicon is
split in four categories (prefix, infix, suffix and complete words) in which the
position-dependent phones are marked appropriately. Note that depending on
the marking style a subword might appear in multiple categories. E.g., with
the <w>-style, all subwords belong to all four categories. More details and
evaluations can be found in [37].

2.3 Language modeling with subword units

The choice of language modeling unit has significant implications for a speech
recognizer. Although the tools and techniques do not necessarily change—
simple n-gram models will work to a certain degree—the optimization is very
dependent on the chosen unit. The choice of units changes the frequential
characteristics of the tokenized training text. When words are split more, the
number of tokens increases and number of types decreases. The extreme case is
to split into characters, where the lexicon would constitute of only the character
set. When the number of tokens in a sentence increases, it increases the number
of units needed to represent the required context information. In n-gram models
the only way to capture the more context information with shorter units is to
increase the n, the length of the preceding context. With standard toolkits this
would also increase the size of the model exponentially. For this reason, we use
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the VariKN toolkit [34], which uses dynamic modified Kneser-Ney growing and
pruning of n-gram models. The resulting models, so-called varigrams, do not
fix the length of the preceding contexts but let it depend on the improvement
it gives to the model. In practice, a model with characters as units might have
the majority of n-grams with a context between 8-14 preceding tokens.

For recurrent neural network (RNN) based language models, it is of less
importance how many tokens there are in a sentence, as the models can learn
dependencies that occur between tokens further apart in history [22]. Besides
that, the subword models have an advantage over word models because of
their smaller vocabulary size. If the vocabulary of a system is too large, a
lot of computing and training time is used for learning the parameters of
the input and output layer which contain the same number of units as the
vocabulary size. Multiple methods to combat this, such as class-based training
[6] or hierarchical softmax [25,20] have been proposed, but for the subword
models, these methods are typically not needed as the size of the input and
output layer is reasonable by default.

For both n-gram and RNN language models the most prominent advantage
can be found in the increased coverage of vocabulary and the reduced sparsity
of the training data. The subword models based on the units learned by the
Morfessor algorithm have the ability to predict almost any word in the language,
even words that were not seen in the training data and those that only came
into existence after the models were trained. Also, the units of subword models
occur more frequently and in more different contexts, giving the models more
examples to train from. In a word-based system, more than half of the words
might only appear once or twice, which is not enough to build a robust estimate
of their occurrence in future texts.

3 System evaluations

To evaluate the properties of subword and character-based models in a modern
neural network-based speech recognition system, we have built systems for
benchmarking tasks in four different languages from three different language
families. First, we evaluate for each language the general performance of a
word-based model and then the performance on different subword marking
styles for n-gram-based language models. After that, we select the best marking
and evaluate the different levels of segmentation by changing the corresponding
parameter in Morfessor. We evaluate these models both on n-gram language
models and two different recurrent neural network architectures; one ‘shallow’
and one ‘deep’ neural network. The details of these systems are described in
Section 3.1.

3.1 Setup

We have used the same set of tools and recipes to create the acoustic and
language models for all languages. The acoustic models are trained with the
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Kaldi toolkit [28]. First GMM-based models are trained, which are used to
automatically clean and segment the data with the standard facilities present
in Kaldi. The resulting cleaned data set is used to train a neural network based
acoustic model. For all languages, we trained three different models. The most
basic one is a time-delay neural network (TDNN) [27], which is a non-recurrent
neural network that takes a fixed time window as input. Furthermore, the
parameters of lower layers are shared between smaller time windows in a similar
fashion to convolutional neural networks. The second NN-based model was a
mixture of TDNN layers and long short-term memory layers (LSTM), which
is a recurrent architecture that retains information from previous samples to
improve its modeling power. The last model is a bi-directional TDNN-LSTM
model, which also unrolls a network forward in time. In our experience, the
recurrent models require more data in order to be trained adequately. Therefore,
they are not expected to outperform the regular TDNN model for smaller data
sets. All neural network acoustic models are trained with lattice-free MMI [29],
which does not primarily optimize frame-based phone prediction accuracy, but
instead decodes part of the utterance on the fly and calculates the error with
the Maximum Mutual Information criterion. However, cross-entropy is still
used for regularization. For all languages, we first used a simple word n-gram
model to determine the best of the three optional acoustic models and then
used that model through all experiments.

The different subword segmentations, besides the character one, are trained
with the Morfessor 2.0 [41], using the basic unsupervised Morfessor Baseline
algorithm [9]. In order to obtain models that have different vocabulary sizes,
multiple values for the corpus weight parameter « are used in Morfessor. After
segmenting the language model training text into subword tokens, four different
unit boundary marker variants are created as explained in Section 2.2. For
the language modeling toolkits, all variants can be trained using the same
procedure; the only difference is that the marked subwords are given as input
instead of words.

The n-gram language models are trained with the VariKN toolkit [34]. This
toolkit uses modified Kneser-Ney smoothing and grows and prunes n-gram
models dynamically, possibly including very long contexts if that results in a
better model. In practice, the models are trained without limiting the order
n. Instead, the total model size is controlled by the growing and pruning
parameters. For the first recognition pass, we train a model with appr. 4-10
million n-gram contexts. For the rescoring pass, we train larger models, with no
limits for growing or pruning. This means that all contexts that add anything
to the prediction power will be added to the model. For word models, there
remain typically between 50-80 million n-gram contexts, for character models
typically up to 400 million n-gram contexts.

We train the RNN language models with the TheanoLM toolkit [11]. Both
a shallow and a deep version of these networks is used; their basic architecture
is shown in Fig. 2. We train the models at most 15 epochs with AdaGrad, and
stop early if perplexity on the development set does not decrease. For models
with a very large vocabulary, we use a class-based output using classes trained
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Fig. 2 The two used RNNLM architectures. Both networks start with a projection and
LSTM layer [16]. On the left the ‘shallow’ architecture that only contains a single highway

and dropout layer. On the right the ‘deep’ architecture that has four pairs of dropout [38]
and highway [39] layers. The number between parenthesis is the number of units in the layer.

with the exchange algorithm [6,19]. The RNN-based models are then used to
rescore the n-gram-based lattices. Standard pruning algorithms such as limiting
the amount of active search paths and restricting the maximum history (from
25 tokens for word models to 100 tokens for character models) are applied in
a similar manner as in [12]. The ‘shallow’ and ‘deep’ architectures were only
mildly optimized. The ‘shallow’ network was chosen as it corresponds to our
previous work [36] and the ‘deep’ architecture was the same as in [12], inspired
by [39]. We further optimized the number of parameters in the deep model.

For all experiments, we report the word error rate (WER), which uses
the counts of substitutions, deletions, and insertions to the reference text to
calculate the error rate.

3.2 Finnish

Finnish is an agglutinative language from the Uralic language family with a
very large word vocabulary, which makes it especially suited to subword-based
recognition. The written language is highly phonemic; a phoneme-based lexicon
would be almost equivalent to a grapheme-based lexicon.
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Table 2 Evaluations for the Finnish YLE broadcast news data set

TDNN TDNN-LSTM  TDNN-BLSTM

19.4 18.5 18.4

(a) Comparison of different acoustic models us-
ing a word n-gram language model.

Segmentation ‘ Vocab size | <w> +m+ m+ +m

char 29 17.3 169 171 17.0
morf 0.001 9502 15.9 157 16.2 16.4
morf 0.01 53183 16.0 158 164 16.4
morf 0.1 248257 16.1 15.7 164 16.4
word 4308628 16.7

(b) Rescored n-gram results for different subword markers and
segmentations using a TDNN-BLSTM acoustic model.

Segmentation ‘ <w> +m+ m-+ +m
char 4589 (13) 4090 (35) 4158 (13) 4270 (13)
morf 0.001 3499 (13) 3507 (35) 3486 (13) 3540 (13)
morf 0.01 3489 (21) 3522 (46) 3364 (21) 3395 (23)
morf 0.1 3607 (37) 3494 (90) 3347 (48) 3390 (49)
word | 2328 (810)

(c) n-gram perplexity results for different subword markers and seg-
mentations on the ASR development set. The number of OOV tokens
are presented between parenthesis.

RNNLM
Segmentation | n-gram | shallow deep
char 16.9 14.4 13.8
morf 0.001 15.7 135 131
morf 0.01 15.8 14.7 14.2
morf 0.1 15.7 14.2 14.0
word 16.7 15.0 14.6

(d) Comparison of different language models
using a TDNN-BLSTM acoustic model and the
+m+-subword marking style.

We use 1500 hours of acoustic modeling data from three different data sets.
The Speecon corpus [17] contains read speech in multiple different conditions.
The Speechdat database [32] also contains read speech from a high number of
speakers over telephone lines. Lastly, the parliament corpus [21] is used which
has speech from the Finnish parliament. For evaluation, we use a broadcast news
set, obtained from the Finnish national broadcaster YLE. The test conditions
are the same as in [36].
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For language modeling we used data from the Finnish Text Collection [10]
which contains mainly newspapers and books from around the turn of the
century. Our selection contained 12M sentences with in total 143M tokens. The
number of unique words was 4.2M.

Based on the initial experiments, where we trained three different acoustic
model architectures and a small word-based n-gram language model, we chose
the TDNN-BLSTM acoustic model for the Finnish task (see Table 3a). Note
that later experiments show that the optimal acoustic model depends on the
type of language model used and that in some cases a TDNN model could
perform better (see Table 10a).

For Finnish, we trained two n-gram models for all segmentations and all
different marking styles. The first-pass n-gram models were tuned to have appr.
4M n-gram-contexts. For the rescored models the amount of n-gram contexts
depends on the level of segmentation, ranging from 50M contexts for the word
model to 200M contexts for the character models. Table 3b shows that the
+m+-style marker is giving the best performance, which is in line with [37,36].
The Morfessor-based subword models are giving the best performance, with
the best segmentation having a 5% relative improvement over a word-based
model. The character model is performing similarly to the word model, having
only a 1% relative degradation.

When we compare the speech recognition results with the perplexity values
on the same development set (Table 3c), we see that they do not follow the
same pattern. We calculated the perplexity values also for the other languages
and observed similarly that they do not indicate the best subword segmentation
and marking style for speech recognition. For example, the +m+-style tends
to perform better in speech recognition than in language modeling, as it can
help to disambiguate pronunciation variants for the same grapheme sequences.

When we rescore and interpolate the results with RNN-based language
models we see a remarkable improvement for all language models. As expected,
the character-based model benefits most from RNNLMs, probably because
the RNN is more effective than n-gram in capturing long contexts. When
the smaller ‘shallow’ network and the larger ‘deep’ network are compared,
the improvement is largest for the character-based model. Compared to the
previous best result in [36], 14.0%, we outperform it by 6.5% relative.

3.3 Arabic

The Arabic, as well as the Finnish language, has a structure that makes it
naturally suitable for subword-based speech recognition. In previous work,
linguistic units have been used frequently, but also data-driven units have been
applied successfully [7,8,26].

Both the acoustic modeling and language modeling data used in this
work come from the 2016 MGB-challenge. The audio is multi-genre broadcast
data from Al-Jazeera and the language modeling text has been sourced from
transcripts and the Al-Jazeera website. In total 1020 hours of data is used for
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Table 3 Evaluations for the Arabic MGB-2 broadcast data set

TDNN TDNN-LSTM  TDNN-BLSTM

20.8 19.4 18.2

(a) Comparison of different acoustic models us-
ing a word n-gram language model.

Segmentation ‘ Vocab size | <w> +m+ m+ +m

char 40 17.8 18.1 18.3 18.3
morf 0.001 5406 17.3 17.2 17.2 17.4
morf 0.01 28802 17.4 172 171 174
morf 0.1 111713 17.5 17.3 17.3 17.5
word 1303163 17.7

(b) Rescored n-gram results for different subword markers and
segmentations using a TDNN-BLSTM acoustic model..

RNNLM
Segmentation | n-gram | shallow  deep
char 18.3 16.8 16.5
morf 0.001 17.2 16.0 15.7
morf 0.01 17.1 15.8 15.6
morf 0.1 17.3 16.4 16.2
word 17.7 16.7 16.5

(¢) Comparison of different language models
using a TDNN-BLSTM acoustic model.

acoustic model training and 121M tokens of text for language model training.
The evaluation set used is the development set provided for the MGB2 challenge
[1].

Although previously phoneme-based lexicons have shown better performance
than grapheme-based lexicons [2], we have opted to use only grapheme-based
lexicons to be able to run all subword systems with the same acoustic model and
without preparing pronunciation dictionaries for the subwords. Note that our
grapheme-based system for the MGB-3 challenge outperformed all competitors,
even when only word units were used [35,3].

As for Finnish, we tested again all TDNN, TDNN-LSTM, and TDNN-
BLSTM acoustic models. Table 4a shows that for Arabic the TDNN-BLSTM
outperforms the other models by a considerable margin, hence TDNN-BLSTM
models are used for further experiments.

Table 4b shows the results for different segmentations and marking styles.
Unlike for Finnish, none of the markings outperform the others clearly. As
the best result (17.1%) was obtained with the m-+-marking, we use this in
further experiments. The different segmentations perform in a similar way as
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Table 4 Evaluations for the Swedish Sprakbanken read speech data set

TDNN TDNN-LSTM  TDNN-BLSTM

6.3 6.1 6.9

(a) Comparison of different acoustic models us-
ing a word n-gram language model.

Segmentation ‘ Vocab size | <w> +4+m+ m+ +m

char 32 3.9 3.3 3.3 3.7
morf 0.001 10996 4.1 3.1 3.3 3.3
morf 0.01 50537 4.3 3.1 3.2 3.2
morf 0.1 197022 4.5 3.0 3.2 3.2
word 3543864 3.0

(b) Rescored n-gram results for different subword markers and
segmentations using a TDNN-LSTM acoustic model.

RNNLM
Segmentation | n-gram | shallow deep
char 3.3 2.8 2.5
morf 0.001 3.1 2.4 2.3
morf 0.01 3.1 2.7 2.5
morf 0.1 3.0 2.6 2.4
word 3.0 2.7 2.5

(¢) Comparison of different language models
using a TDNN-LSTM acoustic model.

the Finnish ones, with the Morfessor-based models outperforming both word
and character-based models.

After the RNN-based rescoring, the Morfessor segmentations are still per-
forming the best, with the morph 0.01 segmentation achieving a result of 15.6%
word error rate. Again, the character-based model has the highest gain from
increasing the depth and complexity of the RNN model. The previous best,
single-system result, was 15.9% [35].

3.4 Swedish

Swedish is a North Germanic language in the Indo-European language family.
As these languages do not typically have very phonemic orthography, subword-
based ASR models are not common. However, Swedish has many compound
words, which suggests that subword units could work well for the lexicon.

We train our models with the data provided by the Sprakbanken corpus, a
public domain corpus hosted by the National Library of Norway. We used 354
hours of acoustic data from the training section of the corpus for training and
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9 hours of acoustic data for development and evaluation, which is roughly 50%
of the provided evaluation data.

For language modeling purposes the Sprakbanken corpus contains n-gram-
counts up to the 6th order, calculated from their language modeling texts.
Unfortunately, the source texts, required for doing subword n-gram or RNN-
based modeling, are not available. To overcome this, we reconstructed an
approximation of the original language modeling corpus from the n-gram-counts
that is 6-count-consistent. The procedure for this was simple, by starting with
a 6-gram context that begins with a sentence marker and then obtaining the
next word by finding a new 6-gram that is consistent with the last 5-gram of
the current sentence. This repeats until a sentence-end marker is found and a
new sentence will be started. All counts for 6-grams are decreases whenever the
6-gram is used, resulting in all 6-grams being used exactly the same amount of
times as in the original language modeling corpus. Our reconstructed language
modeling corpus has 398M tokens.

Although Swedish is semi-phonemic, there are enough deviations that
normally a phoneme-based lexicon would be useful. Thus, the choice of imple-
menting grapheme-based models might affect the performance. Although we
have not found a comparison between phonemic and grapheme-based lexicons
for Swedish, we assume based on the already excellent results showed later in
this section (Table 5¢) that a phoneme-based lexicon would not improve this
system much further.

Table ba shows that the baseline for this data set already achieves a very
low word error rate. In contrast to the Finnish and Arabic systems, the TDNN-
LSTM system outperforms the TDNN-BLSTM system. Altough we have not
investigated this in detail, we expect that the reason is the smaller amount
of acoustic data in the corpus. The optimal TDNN-LSTM model had 26M
parameters, while the optimal TDNN-BLSTM had already 45M parameters.

Like in the Finnish task, Table 5b shows that the +m+-marking style
performs best for Swedish, with the <w>-style being far inferior over other
styles. In n-gram-based modeling the word model slightly outperforms the
Morfessor and character-based models.

Even though the word error rates for n-gram-based models are already
very low, Table 5c shows that RNN-based language models still improve those
results by a significant margin. Even more surprising is that character-based
models can match the performance of word-based models. To test the diversity
between these two models, we calculate the cross word error rate (cWER)
[43]. Between the ’deep” RNN word and character model the cWER is 1.63%,
showing that the majority of the errors in the models are not shared. This
suggests an excellent opportunity for using these to models in an ensemble or
system combination.
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Table 5 Grapheme vs. Phonemes for English using word-based language models.

Grapheme  Phoneme

n-gram small 21.4 20.5
n-gram rescore 18.9 17.9
RNN ‘deep’ 17.7 16.6

3.5 English

Lastly, we run the same set of experiments on an English data set. Unlike the
previous languages, English has only a very limited number of inflections and
surface variations for each word form, and there is a weak relation between the
surface form and the pronunciation of a word. Traditionally, phoneme-based
systems have always been far superior to grapheme-based system. However,
it has been shown that for the 2018 MGB English data set that we are using,
there is only an appr. 5% relative improvement of phoneme-based systems over
grapheme-based systems [42]. Therefore, even though we do not expect any
necessary improvement of subword-based models over word-based models, we
decided to create a grapheme-based system and evaluate the performance of
word, subword and character units also in this task.

In the conditions of the official 2018 MGB challenge, the segmentation of
the hour-long broadcasts needs to be done automatically. Unfortunately, we did
not have a segmenter available and instead, we use the utterance level segment
timings provided in the reference file. We do expect a small degradation when
preparing the official results using a segmentation algorithm trained on the
challenge data. In total, we used 283 hours of acoustic training data and a text
corpus that consists of 646M tokens. For development and evaluation, we use
the dev17b development set.

To validate the findings of [42], we train both a grapheme and phoneme-
based TDNN acoustic model for English, and compare three different word
language models. Table 5 shows that in our setup the results are similar. For a
simple n-gram language model, we have only a 4.3% relative WER degradation
for a grapheme-based model and for the most advanced model a 6.7% relative
reduction. The reason why the difference between these models is so small is not
entirely evident, but we suspect that the modeling power of the acoustic models
in combination with the lattice-free MMI criterion is able to compensate for
the loose grapheme-phoneme relationship. However, this would require further
research to be validated. As the results are very close, we are strengthened in
the belief that it is possible to make competitive models for English without
the use of a hand-crafted phoneme lexicon.

Table 7a shows that here the TDNN (with 18 M parameters) outperforms
all other architectures. Given that we had the least amount of training data
for this language this is not surprising and we expect that with more data
to train the recurrent architectures properly they would be able to cover the
wider pronunciation variation even better.
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Table 6 Evaluations for the English MGB dev17b broadcast data set

TDNN TDNN-LSTM  TDNN-BLSTM

21.4 21.6 24.2

(a) Comparison of different acoustic models us-
ing a word n-gram language model.

Segmentation ‘ Vocab size | <w> +m+ m+ +m

char 29 20.6 20.0 20.0 20.4
morf 0.001 9712 19.4 18.7 18.8 18.9
morf 0.01 35441 19.6 18.8 18.8 18.8
morf 0.1 100983 19.7 18.8 189 18.8
word 757627 18.9

(b) Rescored n-gram results for different subword markers and
segmentations using a TDNN acoustic model.

RNNLM
Segmentation | n-gram | shallow deep
char 20.0 18.6 18.1
morf 0.001 18.7 17.9 17.8
morf 0.01 18.8 18.1 17.5
morf 0.1 18.8 17.4 17.3
word 18.9 18.3 17.7

(¢c) Comparison of different language models
using a TDNN acoustic model.

Table 7b shows that for n-gram modeling the Morfessor-based models
slightly outperform the word model. This is a surprising result, as previous
attempts to make subword models for English have not had great success. Like
the most other languages, the +m+-style marker performs best and is chosen
for further experiments. After rescoring with an RNN-based LM we see that
the subword models still outperform the word models. Table 7c also shows that
whereas for n-gram models there is still a 1.1% absolute gap between word and
character-based models, the gap is only 0.4% when using the deep RNNLMs.

To analyze the consistency of the English results, we have split out the
test-set into the genres given by the creators of the MGB-challenge. Table 7
shows that for all categories, except the ‘advice’ genre, the Morfessor subword
models outperform the word-based models.

3.6 Discussion
Looking for the common patterns in the results between languages, we first

notice that the Swedish results are much better than any other tasks. A natural
explanation is that it consists of read speech in a controlled environment, which
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Table 7 Word error rates for different English categories using the RNN ‘deep’ language
model

category
&
& ¥ ) &
,ix& .\& & 00& @&{D & S
Total & & Ry P I &
% of total 14.3 11.3  23.1 35.3 6.1 10.0
char 18.1 14.5 16.9 25.7 14.5 14.9 22.1
morf 0.1 17.4 14.5 16.0 24.4 13.8 14.6 21.5
word 17.7 | 14.4 16.1 25.0 14.1 14.8 22.0

Table 8 Amount of data used for the different languages

‘Finnish Arabic  Swedish  English

Speech (training) 1500h 1020h 354h 283h
Speech (evaluation) 5.4h 8.4h 8.7h 5.7h
Text (training tokens) 143M 121M 398M 646M
Unique tokens 4.3M 1.3M 3.5M 0.8M

is in contrast with all other data sets that have been taken from TV-broadcasts
with both spontaneous speech and background noises.

Among different type of acoustic models, only those languages that had
lots of data available (> 1000 hours) seem to be able to take advantage of
TDNN-BLSTM models. If there are less data, the TDNN-BLSTMs do not
achieve the same performance as TDNN or TDNN-LSTM models. Note that
the number of parameters was (coarsly) optimized for each single acoustic
model such that reducing or increasing the number of parameters did not
improve the results.

The differences between word and Morfessor-based subword models follow
a common pattern, where the subword models outperform the corresponding
word-based models. The only exception to this are the n-gram models for
Swedish which are slightly worse or equal to the word-based result. For RNN-
based language models, the subword units show more significant improvements,
and the difference between the best subword and word model is more substantial
than for the n-gram models.

For Finnish and Arabic it has been shown before that subword models
can outperform word-based models. Our results validate that this is still the
case in a modern WFST-based HMM /DNN speech recognizer, especially when
RNN-based language models are used. For Swedish and English this is, as far
as we are aware, the first time that Morfessor-subword models outperform a
word-based model on a large vocabulary system trained on a large language
modeling corpus. While the single best result for English, 17.3% WER, is worse
than the best result for a phoneme-based system (16.6%, see Table 5), the
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system combination of various grapheme-based models improve the results
significantly. This will be discussed in Section 4.

When comparing the character-based results to the word-based results
we see an improvement over word-based models only for Finnish (14.6% vs
13.8%). In Arabic and Swedish the RNN-based character models match the
corresponding word-models (16.5% and 2.5% resp.) and for English there is a
small degradation (17.7% vs 18.1%). These results are still impressive, as they
were made with much smaller RNN models (because of the reduced size of the
in- and ouput layers) that took less time to train, especially when the time
needed to cluster the vocabulary of a word-based model is taken into account.
Another thing to note about the character-based models is that they had the
largest relative improvement between n-gram and RNN-based models, as well
as the most significant relative improvement between ‘shallow’ and ‘deep’ RNN
models. This indicates that further refinement of the RNN-based language
models might lead to even better results, possibly outperforming word-based
models for all languages.

The Morfessor-based subword models did outperform the character models
for all languages, indicating that the subword units learned by Morfessor are
very suitable for the ASR task. The optimal number of subword units varied
per language, with appr. 10k units being optimal for Finnish and appr. 100k
units for English. However, the differences were small, and we expect that for
any language a subword lexicon with a size between 10k and 100k will work
well and provide accuracy that is close to the optimal lexicon.

4 System combination between different units

Introducing different sizes of subword units gives a possibility to make a variety
of models to evaluate. Not only can these models be evaluated separately, but
it is also possible to combine these results using system combination. The
most common technique is to use Minimum Bayes Risk (MBR) decoding [13,
44]. Instead of optimizing the sentence-error-rate, which is done in ordinary
Maximum a Posterori (MAP) decoding, MBR decodes the utterance in such
way that minimizes the word error rate directly. This is very powerful in
combination with lattice combination, as for each word location the language
model likelihood can be averaged between the lattices.

To make system combination work between systems trained on different
units, the lattices need to be first converted to the same vocabulary. This
can be done with a simple FST-based transformation that is created by first
reconstructing all the words in the subword lattice and mapping these subwords
to their actual words. Once all lattices are using the same vocabulary, they can
be combined into a new lattice that contains all word-paths from the different
systems. Afterwards, a standard MBR-decoder is used to get the optimal word
sequence.

For all languages evaluated in this paper, we have run system combination
experiments in two dimensions. First, we run system combination separately for
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Table 9 Each of the rows ”char, morf, word” contain WER results of one LM trained as
the RNN ‘deep’ LM introduced in the chapter III. The four columns are the three AMs and
a combination of the corresponding systems (AM comb). The number in parenthesis is the
number of systems combined. The LM/AM Comb rows are system combinations of all these
LM units, as well as a selection of different AMs. The colored background indicates which of
the AMs (columns) are combined.

Unit | TDNN  TDNN+LSTM TDNN+BLSTM | AM comb
char 13.4 13.6 13.8 12.3 (3)
morf 0.001 | 12.8 13.3 13.1 11.9 (3)
morf 0.01 14.1 14.5 14.2 12.7 (3)
morf 0.1 13.8 14.3 14.0 12.4 (3)
word 14.6 15.0 14.6 13.3 (3)
12.8 (5)
LM/AM 124 (5)
Comb 11.8 (10)
11.4 (15)
(a) Finnish
Unit TDNN TDNN+LSTM TDNN+BLSTM | AM comb
char 18.9 17.8 16.5 15.9 (3)
morf 0.001 | 17.7 16.7 15.7 14.9 (3)
morf 0.01 | 17.7 16.6 15.6 14.9 (3)
morf 0.1 18.4 17.1 16.2 15.4 (3)
word 18.7 17.6 16.5 15.7 (3)
15.5 (5)
LM/AM
Comnb 14.7 (10)
14.6 (15)
(b) Arabic
Unit TDNN TDNN+LSTM TDNN+BLSTM | AM comb
char 2.4 2.5 3.2 2.2 (3)
morf 0.001 | 2.2 2.3 3.1 2.1 (3)
morf 0.01 | 2.4 2.5 3.1 2.2 (3)
morf 0.1 2.3 2.4 2.9 2.1 (3)
word 2.4 2.5 3.1 2.2 (3)
2.2 (5)
LM/AM
Comnb 2.0 (10)
2.0 (15)
(¢) Swedish
Unit Phone| TDNN TDNN+LSTM TDNN+BLSTM | AM comb
TDNN
char 18.1 18.7 21.2 16.9 (3)
morf 0.001 17.8 18.3 21.0 16.6 (3)
morf 0.01 17.5 17.9 20.7 16.4 (3)
morf 0.1 173 178 20,6 16.2 (3)
word 16.6 | 17.7 18.2 20.9 16.5 (3)

17.2 (5)

a4 e 1A\
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each language model unit, combining over the three different acoustic models
we trained earlier. This shows the improvement for the typical setup where
the system combination is used over multiple acoustic models. The second
experiment we did was to combine the RNN-deep models for all different units:
characters, Morfessor subwords, and words. In addition to doing this for a
single acoustic model, we also combined all these units across the two best and
all acoustic models.

Table 10a shows the system combination results for the Finnish models.
The rightmost column, which shows the results of combinations across acoustic
models, indicates that for any unit a significant gain can be made by combining
the different AMs. The sharpest decrease in WER is obtained for the morf
0.01 models, for which the best non-combined result 14.1% is reduced to 12.7%
with system combination.

The last rows of Table 10a shows the results of system combination over
different units. The first result, which combines the 5 TDNN+BLSTM systems
improves the best individual result of 13.1% to 12.8%. A combination over
multiple acoustic models enhances the result even further to 11.4%. Note
that the TDNN model performs best when using RNNLMs, in contrast to
TDNN+BLSTM for n-gram-based models (Table 3a).

For Arabic, the results in Table 10b show a similar improvement through
system combination. The best cross-AM combination improved the best in-
dividual result of 15.7% to 14.9% and combination with multiple units gives
the best result of 14.6%. These results are in line with the improvements we
obtained in [35] where the combination of all our systems improved the best
individual result of 15.9% to 14.8%. The main reason for obtaining better
results than [35] is the use of better (deeper) RNNLMs.

For Swedish, the best WER for an individual system was already very low
2.2%. However, the system combination over different acoustic models reduced
this to 2.1% and the combination over both acoustic models and language units
to 2.0% WER.

Lastly, the English results are more extensive, as we combined the systems
also with the phoneme-based acoustic word model. The best individual result
with the phoneme-based model is 16.6% and with the grapheme-based model
17.3% WER. Already when three different grapheme-based acoustic models are
combined, the error rate matches or surpasses that of the single phoneme-based
system in for all units, except for the character-based model. Combining all
systems gives the best WER of 15.9%, a 8.0% relative improvement over the
best single grapheme-based system and a 4.2% relative improvement over the
phoneme-based system. Note that this comparison only indicates the power of
combining diverse models, in larger extent across acoustic models and in smaller
extent across different units. It also would be possible—and probably effective—
to do system combinations across different acoustic models for phoneme-based
models. However, for a phoneme-based system it is much more difficult to train
models with different kind of units to be used for system combinations From
the perspective of low-resource languages that do not have manually created
lexicon resources, it is encouraging that even for a language with as irregular
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pronunciations as English, a normal phoneme-based system can be matched
by multiple grapheme-based systems.

To further optimize the recognition accuracy we could also try system com-
bination over different phoneme-based acoustic models as we did for grapheme-
based models. However, with the current experiments we can already conclude
that our grapheme-based systems are able to capture the different pronunci-
ations of graphemes with surprising accuracy. To our knowledge, it has not
been shown before that the difference between grapheme and phoneme-based
systems can be this small for the English language.

5 Under-resourced scenario

As explained in Section 2.3, one of the strengths of subword models, including
character models, is that the language model training data contains more
examples of each unit and therefore can be more effectively used in language
model training compared to the word models. To demonstrate this, we trained
all systems with only 10% of the available language modeling data and compared
the impact on the performance for different language modeling units. This
effectively simulates an under-resourced scenario where less language modeling
data is available.

In this study we reduced only the amount of language modeling data and
kept the acoustic models identical to the previous experiments. Naturally,
the acoustic model will also learn some (grapheme-based) language patterns
through the sequence-based training criterion, but we do not expect this to
affect the experiment: The language modeling data does not contain the acoustic
model training utterances, and the number of word types and tokens in the
acoustic modeling data is limited. In the Finnish experiment, where we have
the largest acoustic modeling training set, there are still only 9M tokens and
400k unique words present in the acoustic training data. Even if this data were
counted into the amount of language modeling data, the total amount of data
used would still be less than 20% of the original text data.

For Finnish (Table 11a), the results are between 7 and 17% worse than with
the full language modeling data. As hypothesized, the results of the subword
models degrade less than those of the word-based models. The character model
is now outperforming both the word model as well as two of the Morfessor
subword models.

Table 11b shows a similar pattern for the Arabic data set. The character
model outperforms the word-based model even for the n-gram model.

In Swedish, as shown in Table 11c, the relative degradations seem larger
than for the other tasks. This may be caused by the nature of errors when
the WER is much closer to zero, compared to the other tasks. In the under-
resourced case, the character model outperforms the word-based model and
comes close to the performance of the Morfessor-based subword models.

Unlike in the other languages, for English the performance of the subword
models stays close to the word models both in the 10% and in the full 100%
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Table 10 Comparison of different type of subword language models with 10% language
modeling data. The last two columns show the deep RNNLM result for the full data and its
relative difference to the deep RNNLM result with 10% data.

RNNLM 100%  rel. diff
Segmentation | n-gram | shallow  deep deep  to 10%
char 18.5 15.9 15.4 13.8 -10.4%
morf 0.001 174 15.4 154 13.1 -14.9%
morf 0.01 17.5 16.0 15.7 14.2 -9.5%
morf 0.1 17.6 15.3 15.1 14.0 -7.3%
word 196 | 180 175 | 146 -16.6%

(a) Finnish

RNNLM 100%  rel. diff
Segmentation | n-gram | shallow  deep deep  to 10%
char 19.3 17.7 175 16.5 -5.7%
morf 0.001 18.1 17.1 17.0 15.7 -7.7%
morf 0.01 18.1 17.1 17.0 15.6 -8.2%
morf 0.1 18.5 17.2 17.0 16.2 -4.7%
word 194 | 194 183 | 165  -9.8%

(b) Arabic

RNNLM 100%  rel. diff
Segmentation | n-gram | shallow deep deep to 10%
char 6.0 4.2 3.7 2.5  -32.4%
morf 0.001 5.3 3.4 3.1 2.3 -25.8%
morf 0.01 5.3 3.8 3.5 2.5 -28.6%
morf 0.1 5.4 3.6 3.4 2.4 -29.4%
word 6.0 | 47 44| 25 -432%

(c) Swedish

RNNLM 100%  rel. diff
Segmentation | n-gram | shallow  deep deep  to 10%
char 21.5 19.8 19.1 18.1 -5.2%
morf 0.001 20.6 18.4 18.2 17.8 -2.2%
morf 0.01 20.4 19.0 18.7 17.5 -6.4%
morf 0.1 20.4 18.6  18.5 17.3 -6.5%
word 220 | 193 188 | 17.7  -5.9%

(d) English

data. On the other hand, the amount of language modeling data for English
was the largest (see Table 8), with the 10% system still containing 65M training
tokens.
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For all languages, there is a clear degradation in results when the amount of
language modeling data is reduced. As expected, the subword models are more
robustly handling the data sparsity in all languages. The only exception to
this, English, can be explained by the fact that the original vocabulary is much
smaller and the language modeling data much more substantial than for the
other languages. When comparing the character-based models to the Morfessor
subword models, only in Finnish their performance matches to two out of
three Morfessor models, with the best Morfessor model still outperforming the
character based model (15.1% vs 15.4%). In other languages, the character
models still stay behind.

6 Conclusion

We set out to implement and evaluate the use of subword units in state-of-the-
art speech recognition, including advanced neural network based acoustic and
language models. To do this, we have evaluated word and subword systems for
four distinct languages from different language families.

Our primary evaluation shows that models based on subwords derived by
Morfessor consistently outperform word-based models on all tested languages.
The optimal size of the subword lexicon varied across languages, from less
than 10,000 in Finnish to a bit over 100,000 in English, but in no situation did
subword models perform worse than the same model with word units. Although
this effect is already present when using n-gram language models, it is even
stronger for RNN-based language models, which have a better capability of
capturing longer contexts.

With accurate RNN language models, using single characters as subword
units also yields surprisingly good results. A character-based model outper-
formed the word-based model for Finnish, produced a similar performance
for Arabic and Swedish, and underperformed the word-based model only for
English.

As using different subword units provides with a variety of different models,
we combined these systems using MBR-based system combination. Although it
was already effective to combine acoustic models from three different architec-
tures, using models with different language modeling units was also a success,
with combination systems reducing the the WER of the single best system
with over 10% relative.

Although it was not the original intent of this paper, we did obtain interest-
ing results regarding the use of grapheme models for English. Not only was a
simple direct word-based comparison between grapheme and phoneme models
only showing a 6% edge for phoneme-based models, by doing system combina-
tion the results of the grapheme-based system could match and surpass the
phoneme-based result, without having the need for a hand-crafted pronuciation
lexicon. Furthermore, a combination with all the grapheme and phoneme-based
systems that we trained resulted in a 15.9% WER for the MGB dev17b test
set, which is by far the best result published on this data set.
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Lastly, the evaluation with smaller language modeling data sets showed

another strength of the subwords, where the degradation was significantly
smaller than that of the word units. This confirms the hypothesis that using
subword units reduces data sparsity and increases model robustness.
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A.5 AALTO’s DCASE 2018 workshop paper [5]

This paper describes AALTO’s submission to the DCASE 2018 general audio event detection
challenge and the methods applied and developed for it. The detected tags, time codes
and probabilities of the audio events will be used in the project together with visual tags
and speech recognition results as inputs to the video description system.
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ABSTRACT

In this paper, we presented a neural network system for DCASE
2018 task 2, general purpose audio tagging. We fine-tuned the
Google AudioSet feature generation model with different settings
for the given 41 classes on top of a fully connected layer with 100
units. Then we used the fine-tuned models to generate 128 dimen-
sional features for each 0.960s audio. We tried different neural net-
work structures including LSTM and multi-level attention models.
In our experiments, the multi-level attention model has shown its
superiority over others. Truncating the silence parts, repeating and
splitting the audio into the fixed length, pitch shifting augmentation,
and mixup techniques have all improved the results by a reason-
able amount. The proposed system achieved a result with MAP@3
score at 0.936, which outperforms the baseline result of 0.704 and
achieves top 8% in the public leaderboard.

Index Terms— audio tagging, AudioSet, multi-level attention
model

1. INTRODUCTION

Sound contains various information that could indicate the sound
sources, surrounding environment, music genres, possible dangers
or even the emotions of the speakers. Thus sound plays a crucial
part in our daily communication and interaction with the world.
Teaching machines to listen, such as recognizing the sound events,
would benefit humans in many ways. Relevant applications include
public surveillance, sound print, auditory medical information mon-
itoring and multimedia content analysis.

General purpose audio tagging is a task that infers descriptive
labeling from these sounds such as musical instruments, domes-
tic animals, and human activities. Recognizing and labelling these
sound events with appropriate tags can provide a powerful tool to
categorize the extensively large amount of audio data from the in-
ternet. With the labels, the content providers can give better ser-
vices such as providing audio descriptions for visually or hearing
impaired people, and providing powerful searching tools for the
people working in the entertainment industries.

The traditional methods for doing the audio classification and
audio tagging are adapted from speech recognition such as the Mel-
frequency cepstral coefficients (MFCC) features and simple Gaus-
sian mixture model (GMM) classifiers [1]. Recently, deep neural
networks have proven its great usefulness in feature engineering,

This work was supported by the Kone foundation, and the European
Union’s Horizon 2020 research and innovation programme via the project
MeMAD (GA780069). Computational resources were provided by the
Aalto Science-IT project.

classification, detection, and audio synthesis. Almost all the sub-
missions in DCASE 2017 [2] used some forms of neural networks
such as long short-term memory units (LSTM) and convolutional
neural networks (CNN). Thus deep learning is our main research
approach for this task. Google has created a dataset called Au-
dioSet with a structured hierarchical ontology [3], which provides
the proper way to annotate the sounds. Instead of releasing the orig-
inal audio files, each sample from the AudioSet is represented by
10 instances of 128 dimensional features. Google also provides a
pre-trained model to generate the 128 features for 0.960 seconds
audio. Kong et al. proposed a single-level attention model on this
dataset, which outperformed the Google’ baseline [4]. Later, Yu et
al. proposed a multi-level attention model as an extension to previ-
ous single-level attention models, the results outperformed both the
single-level attention model and the baseline [5].

Thus we came up with the idea to fine-tune the feature genera-
tion model first for the 41 classes of this DCASE task, and then try
the multi-level attention model on the generated compact features.
We aimed at proving the usability of these compact features and
the superiority of multi-level attention model. We also incorporated
pitch shifting augmentation and mixup techniques.

The structure of this paper is as follows. Section 2 describes
methods on how to fine-tune the existing CNN model for the given
41 classes. Section 3 describes the design of our proposed system.
The experimental results and conclusions can be seen in section 4
and 5 respectively.

2. FINE-TUNED VGGISH MODEL

2.1. Structure

VGGNet [6] with deep CNN structures has worked greatly well in
image classification. Since the spectral representation of an audio
signal can be used directly as an image, this deep CNN structure is
also a promising techniques in many machine listening tasks, such
as audio tagging, audio event detection and acoustics scene classi-
fication. VGGish model [7] is a variant of the VGG model with
minor modifications. Table 1 shows the detailed structure of the
modified version. Google trained this model on the YouTube-100M
dataset with a total of 100 million videos. The training set contains
70 million videos and they were further split into non-overlapping
960 ms audio frames. Log-mel spectrograms were then computed
as 96 x64 images for the input of the VGGish model. The evalua-
tion results of VGGish model showed its great usability in the audio
domain.

The pre-trained VGGish model can act as a feature extractor.
The provided 128 embedding features for 0.960 seconds are very
compact, high level and semantically meaningful as well. These
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Table 1: VGGish model structure. The kernel size for CNN is (3,
3) and the kernel size for pooling is (2, 2). The activation function
is 'relu’ for all the layers.

layers filters@size | layers filters @size
1. input 1@96x64 9. conv 512@12x8
2. conv 64@96x64 10. conv 512@12x8
3. pooling | 64@48x32 11. pooling | 512@6x4
4. conv 128@48x32 | 12. flatten 12288

5. pooling | 128@24x16 | 13. fc 4096

6. conv 256@24x16 | 14. fc 4096

7. conv 256@24x16 | 15. fe 128

8. pooling | 256@12x8 16. ...

compact features can then be fed into a shallower model for clas-
sification. VGGish model can also become part of a larger model
where more layers are added upon the model, which makes it pos-
sible to adapt and fine-tune this model for different datasets.

2.2. Balanced and Unbalanced Fine-tuning

The original VGGish model is trained for a multi-label classifica-
tion task with the Google AudioSet ontology [3], which has 632
classes in a hierarchy tree structure. This challenge is a multi-class
classification task, which means there is only one correct label for a
sample. The 41 classes for this task all belongs to the AudioSet on-
tology. The training data is provided by FreeSound Dataset (FSD)
[8]. The dataset has in total 9473 training files with the smallest
class having only 94 training samples and the biggest class having
300 training samples. The average length of the audio files is 6.7
seconds. The more detailed description of the task setup, dataset
and baseline can be seen in [9]. We added one hidden layer with
100 units after the VGGish model, and the final classification layer
has 41 units with softmax activations.

To fine-tune the VGGish model, we must divide the data into a
training part and a validation part. The validation loss is then used
as the stopping criterion in case of overfitting. Firstly, we used the
first 8000 audio files as training data and the remaining 1473 audio
files as validation data. To fully use the data, we then used the last
8000 audio files as training data and the first 1473 audio files as
validation data. Thus for one balancing technique we would get
two models, one of which is fine-tuned on the first 8000 audio files
and the other is fine-tuned on the last 8000 audio files.

Mini-batch balancing is a technique which assigns equal num-
ber of training samples for each class in each mini-batch. It has
been proven useful on AudioSet to deal with the unbalanced dataset
[4]. For the balanced fine-tuning, we followed the mini-batch bal-
ancing method by choosing an audio sample from each class for
every training batch. However, it is not perfect balancing since au-
dio samples may contain different number of 0.960 seconds length
segments. In total, there would be 41 audio files, around 280 log-
mel spectrograms, for each training batch. On the other hand, we
also fine-tuned a unbalanced model by randomly choose 41 audio
files in each batch for comparison. So we got 4 models in total.

The fine-tuned model are used as the feature extractors for the
audio. Each audio file is firstly split into several non-overlapping
0.960 seconds segments. And for each segment, the log-mel spec-
trogram with dimension 96 x 64 is computed, then the spectrogram
is fed into the fine-tuned model to get the 128 dimensional features.
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3. THE PROPOSED SYSTEM

3.1. Preprocessing

The provided audio files are provided as PCM 16 bits, 44.1 kHz,
mono format. However, the original quality might be quite dif-
ferent since they are uploaded by users all around the world. For
preprocessing, we trimmed the silence parts only in the beginning
and the end to avoid the influence of these irrelevant silence parts.
We used the librosa' toolbox for the trimming here. The normal-
izing and pitch shifting mentioned in the following section are also
implemented using this toolbox. The silence parts that are in the
middle might contain important dynamic information for classifi-
cation. We then normalized the amplitude of the audio files to [-1,
1]. The trimmed and normalized audio files are then split into non-
overlapping 0.960 seconds segments. For each segment the log-mel
spectrogram with size 96 x 64 is computed with 25ms window size
and 10ms hop size. The 96 represent the frame size and 64 repre-
sents the number of frequency bands. The spectrograms are then
fed into the fine-tuned VGGish model for features extraction.

3.2. Data Augmentation

The data is unbalanced where only around half of the classes have
300 audios. The imbalance problem could make the model empha-
size more on the classes with more training samples and neglect to
learn from the classes with less samples. To deal with this problem,
we used the pitch shifting, repeat and split strategies for augmenta-
tion.

For the implementations of pitch shifting, we randomly choose
an integer number between (-12, 12) for each audio file, and then
shift the correspond number of semitones to create the new file. The
shifting does not affect much on the melodic or stable classes, since
the maximum shift is only one octave. For the noise-like classes
such as ’fireworks’” and ’fart’, the perception is still relatively okay
even for those with maximum amount of shift.

Some of our models used fixed length audio as input, but the
audio files have variable length. To fully use the full length of the
audio, we split them into several fixed length audios as input, which
also gave us more training data. For the audio files that are shorter,
we repeat them and concatenate them together to the fixed length.

3.3. Mixup

Mixup means training the neural networks using the convex com-
binations from pairs of examples and their labels. It helps the neu-
ral network to emphasize the linear combination between the train-
ing samples, which can improve the generalization ability, reduce
memorization of the corrupted labels, increase the robustness to ad-
versarial examples [10]. The training data provided by the orga-
nizer has another label representing if the audio is manually verified.
Thus trying this method can help reduce the effect of the potential
corrupted or misclassified audio in the unverified audios. Besides,
this will also allow the model learn to distinguish between classes.
The following equation [10] explains how the algorithms works:

T = Az; + (1 — )\)1‘]
=y + (1 = Ay,

¥

A (D
~ Beta(a, o)

«@

'https://github.com/librosa/librosa
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Figure 1: Attention model for Audio Set [4]

The (24,y:) and (z;, y;) are two training and label pairs, which are
randomly sampled form the training data. A is drawn from a Beta
distribution and lies in the region [0,1]. The experiments in the work
[10] shows that increasing the o would increase the training error
on real data and minimize the generalization gap. They also found
that & € [0.1,0.4] would give an improved performance and large
o will leads to underfitting.

3.4. Multi-level Attention Model

The dynamic changes are crucial in audio tagging challenges. Only
considering the frequency structure might be useful for the recogni-
tion of the melodic instruments, but for the tags such as *gunshort’,
and ’knock’, the temporal changes are much more important. An
attention model, which assign different weights for the instances
in a time series, is a good strategy for considering the dynamics
of sound. An attention model structure [4] presented for the Au-
dioSet can be seen in Fig. 1. B, represents an audio file with
10 instances 1 ~ 10, fr(2n) represents the classification results
for class K. The weights for each instance are firstly computed as
vk(x1) ~ vk(z10) and then normalized to ppx(z1) ~ Prk(z10)
so that 3°/° px(2;) = 1. Finally, multiplying the weights with
the relevant prediction results and summing them together gives the
final prediction for class K.

Combining the features from different levels and different time-
scale can provide more accurate descriptions. A CNN-based ar-
chitecture [11] has shown great performance for music tagging
by aggregating the multi-level and multi-scale features. Concate-
nated features extracted from different levels of CNN has also been
proven useful in computer vision tasks [12]. Inspired by the works
[4] [5] on Google Audio Set, we decided to choose a similar multi-
level attention structure for audio. We did not try multi-scale meth-
ods because the fine-tuned VGGish models can only generate fea-
tures for the 0.960 seconds fixed length audio. We prepared each
training sample as 6 concatenated segments, each segment contains
0.960 seconds audio. Then the 6 x 128 dimensional features ex-
tracted using the fine-tuned VGGish model are fed into the neural
network for training.

Fig. 2 shows the model structure. Each of the 6 instances are
fed into a fully connected neural networks with 3 layers. Different
color boxes represent the different levels features, and the features
from the same level are then fed into an attention model, shown in
Fig. 1, to get the predictions. We then concatenated all three pre-
dictions from different levels and forward them into the final classi-
fication layer with the softmax activation to get the 41 probabilities
for the 41 classes.
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Figure 2: Model Structure for Multi-level Attention model

3.5. Evaluation Metric

The evaluation uses the Mean Average Precision @ 3 (MAP@3)%.
The detailed implementation and explanation can be seen in the link
provided in the footnote. Simply speaking, up to three predictions
can be given even though there is only one correct label. The order
of the predictions matters in this setting. If the correct label is pre-
dicted in the 1st position among those three predictions, the system
would get a score 1. 2nd position would get a score 1/2, 3rd posi-
tion would get a score 1/3. If there is no correct answer in the three
predictions, the score would be zero. The average of the scores for
all the testing samples would be the final evaluation score. How-
ever, the public leaderboard only has the score for around 19% of
the testing data. So the scores in this paper are all evaluated upon

’https://github.com/benhamner/Metrics/blob/
master/Python/ml_metrics/average_precision.py
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Table 2: The one second DNN evaluation results on different fine-

tuned VGGish models
Feature Extractor MAP@3
Baseline 0.704
Original VGGish 0.606

Balanced First Part 0.870
Balanced Last Part 0.864
Balanced All 0.891
Unbalanced First Part | 0.858
Unbalanced Last Part | 0.872
Unbalanced All 0.892
Ensemble All 0.903

Table 3: Evaluation results on different model structures and hyper-

parameters.
Index | Model Structure MAP@3
A 1-Segment Multi-level 0.903
B LSTM 0914
C 6-Segment Multi-level Attention | 0.925
D C + Pitch shifting Augmentation | 0.930
E D + Mixup (o = 0.1) 0.930
F D + Mixup (o = 0.2) 0.936
G D + Mixup (o = 0.4) 0.931
H D + Mixup (a = 1.0) 0.930

those 19% and the final results might be different.

4. EXPERIMENTS

4.1. Different fine-tuned VGGish models

Firstly, we tested the performance of different fine-tuned VGGish
models on a simpler model structure. In this experiment, we built a
simple 3-layer fully connected neural networks with each layer con-
taining 600 units. The classification results from each layer are con-
catenated together as input to the final layer. The activation func-
tion is ‘relu’ for all the layers, except that the classification layers
use ’softmax’ activation function. Batch normalization and dropout
with ratio 0.4 are used after each middle layer. The input is the 128
dimensional features for 0.960 seconds. For evaluation on files with
different length, we took the average results as the score. As can be
seen from Table 2, all of the fine-tuned models outperform the orig-
inal VGGish model. 'Balanced first part’ means the feature extrac-
tor is trained using mini-batch balancing on the first 8000 training
samples and validated on the remaining ones. ’Balanced last part’
means the feature extractor is trained using mini-batch balancing
on the last 8000 training samples and validated on the remaining
ones. ’Balanced all’ means taking the geometric means of the re-
sults from the *Balanced first part’ and ’Balanced last part’. *Un-
balanced’ means the model is trained without mini-batch balancing.
The remaining names can be interpreted in similar way. There is no
clear difference between the models trained with mini-batch balanc-
ing and those without. However, using geometric mean results of
all 4 models will give the best results.
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Table 4: Evaluation results on different number of segments multi-
level attention models

Number of Segments 1 2 4 6
MAP@3 0917 | 0.919 | 0.931 | 0.936

Number of Segments 8 10 Ensemble All
MAP@3 0.929 | 0.931 0.931

4.2. Different neural network structures and hyper parameters

Section 4.1 has shown that utilizing the results from all 4 fine-tuned
models would give the best results. Thus for each model structure
in this section, we also used the same strategy. The results for dif-
ferent model structures and different random mix factors o can be
seen in Table 3. Model A has the same setting as the best results
from Table 2. Model B uses one LSTM layer with 600 hidden units
upon the original variable length input. Model C has the same 6-
segment multi-level attention structures shown in Section 3.4, other
parameter are same as A. Model D is based on model C with pitch
shifting augmentation. Model E, F, G, H are based on D with dif-
ferent mixup factors.

From the comparison between model A, B, C, LSTM is better
than the 1-segment multi-level model. The 6-segment multi-level
attention model performs the best. Thus temporal information plays
an important role in recognition, and multi-level attention model
has better ability to model the temporal information than LSTM in
our settings. Using the pitch shifting augmentation to generate a
relevantly more balanced training data also improves the results a
little bit. The comparison between model E, F, G, H shows mixup
with the o = 0.2 has the best performance among these 4 choices.
However, since the difference among C-H is quite small, further
significance test might still be needed.

4.3. Different number of segments

We also tried the multi-level attention model with different num-
ber of segments as input. Other training settings, such as the pitch
shifting augmentation and mixup, are the same as the best results in
Table 3. Results can be seen in Table 4. For the ensemble results,
we took the geometric mean of all the results. We can see that the 6-
segment model has the best performance and the ensemble does not
improve the overall score. The reason might be that these models
are not diverse enough.

5. CONCLUSIONS

In this paper, we tried different fine-tuning methods on the AudioSet
VGGish model for generating 128 features for 0.960s audio. The
results show that the combination of the 4 models trained with dif-
ferent train-validation splitting and balanced/unbalanced techniques
would give the best results. We also implemented different neural
network structures for comparison and found that multi-level atten-
tion model performs the best among all. This shows the importance
of modeling the temporal information. The 6-segment multi-level
attention model with pitch shifting augmentation and mixup method
using a = 0.2 has the best MAP@3 at 0.936 in public leaderboard.
Further research might include more thorough fine-tuning, building
own CNN model for feature generation, utilizing multi-scale fea-
tures along with multi-level features for the attention model.
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