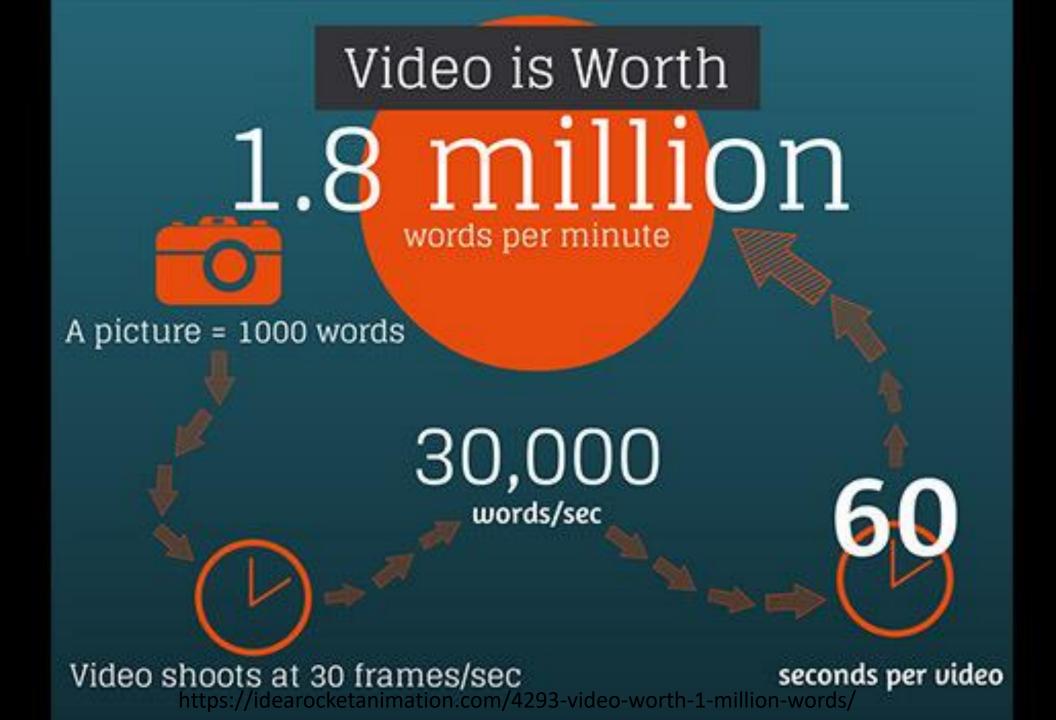
Realistic Video Summarization through VISIOCITY: A New Benchmark and Evaluation Framework

Vishal Kaushal¹, Suraj Kothawade², Rishabh Iyer², Ganesh Ramakrishnan¹ ¹Indian Institute of Technology Bombay, ²University of Texas at Dallas



Flip Side: Lot of Redundancy



Need for Automatic Video Summarization

Capture Now, Process Later Mentality

Motivation 1: Dataset

Name	# Videos	Duration of Videos	Total Duration	# summ	# cat
SumMe [8]	25	Avg: 2 min, 9	1 Hour, 10 min	15-18	-
TVSum [29]	50	Avg: 4min, 11 sec	3.5 Hours	20	10
MED Summaries [26]	260	Dur: 1-5 mins, Avg: 2.5min	9 Hours	2-4	15
UT Egocentric [16]	4	Avg: 254 mins	16 Hours	-	1
Youtube 1 [2]	50	Dur: 1-10 min, Avg: 1 min, 39 sec	1.38 Hours	5	-
Youtube 2 [2]	50	Dur: 1-4 min, Avg: 2min, 54sec	2.41 Hours	5	-
Tour20 [24]	140	Avg: 3 min	7 Hours	-	-
TV Episodes [35]	4	Avg: 45 min	3 Hours	-	1
LOL [5]	218	Dur: 30 to 50 min	-	-	1
VISIOCITY (OURS)	67	Dur: 14-121 mins, Avg: 55 mins	71 hours	160	5

- Either very short videos or very few long videos or long videos of only a particular type
- We release VISIOCITY (VIdeo SummarizatIOn based on Continuity, Intent and diversiTY)
- Rich annotations to support different flavors of summarization and other tasks as well

Motivation 2: No Single Right Answer

Context Dependent

• Depends on purpose for which summary is required Subjective

 Preferences of two persons may not match Depends on higherlevel semantics of the video

 Visually same, semantically different vs semantically same, visually different

Challenge: No Single Right Answer

- Difficult to get many reference summaries of different lengths of long videos
- A recipe for creating reference summaries of desired length having different characteristics using annotations (concepts present in each shot)
- Learning from a "combined" reference summary vs learning from separate reference summaries
- Evaluating video summaries
 - With respect to reference summaries
 - Avg vs Max
 - F1 could be deceptive!
 - Using the annotations (indirect ground truth)
 - We propose a suite of measures that score a summary on different characteristics
- Learning from a combination of loss functions instead of a single loss function

VISIOCITY

67 long and diverse videos

6 Categories: Friends, Soccer, Surveillance, TechTalk, Birthday, Wedding

Concept annotations for every shot

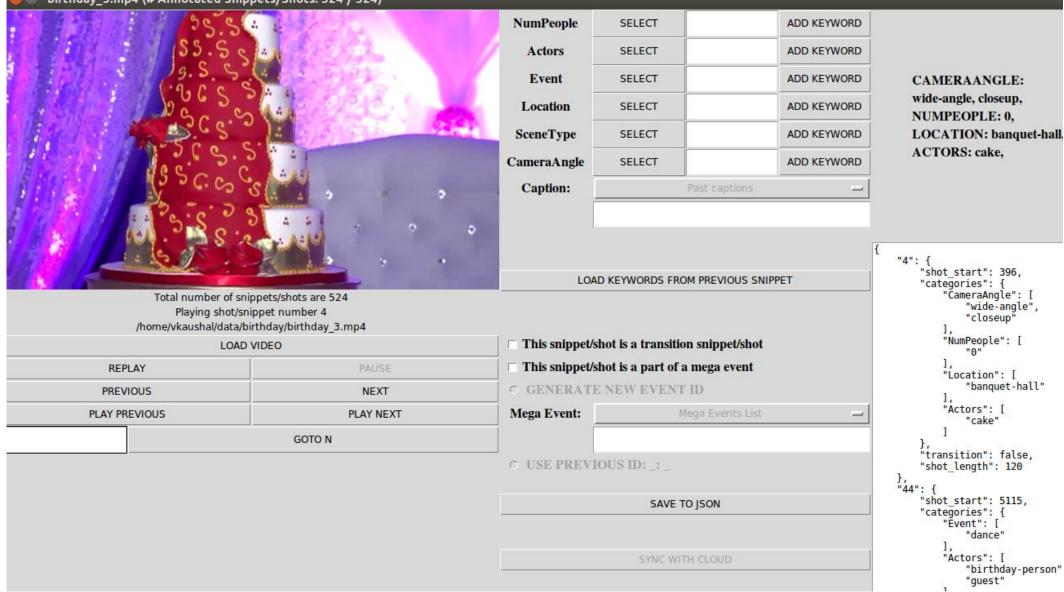
Domain	# Videos	Duration	Total Duration
Sports(Soccer)	12	(37,122,64)	12.8
TVShows (Friends)	12	(22,26,24)	4.8
Surveillance	12	(22,63,53)	10.6
Educational	11	(15,122,67)	12.28
Birthday	10	(20,46, 30)	5
Wedding	10	(40,68,55)	9.2
All	67	(26,75,49)	54.68

Annotations

- Concepts for each shot (indirect ground-truth)
 - Generator of ground truth summaries
 - More informative
 - Easier and more objective
- 'Mega events'
- Concept annotations are better than scores or ratings
 - Easier and more accurate
 - No chronological bias
 - Semantic content better captured through text both from importance and diveristy perspective
 - Lends well to a wide variety of problems

Annotation Tool

birthday_3.mp4 (# Annotated Snippets/Shots: 524 / 524)



Evaluation

$$Div_{sim}(X) = \max \min_{i,j \in X} d_{ij}$$

F

$$Div(X) = \sum_{i=1}^{|C|} \max_{j \in X \cap C_i} r_j$$

 $1 \ge 1$

Discourages two similar looking snippets in a summary

Discourages similar consecutive snippets but doesn't exclude similar snippets separated in time

$$MegaCont(X) = \sum_{i=1}^{L} r^{mega}(M_i) |X \cap M_i|^2$$
 (Semantic) Continuity

$$\operatorname{Imp}(X) = \sum_{s \in X \cap A \setminus M} r(s)$$

Importance

Automatic Generation of Reference Summaries

 $score(X, \Lambda) = \lambda_1 MegaCont(X) + \lambda_2 Imp(X) + \lambda_3 Div(X)$

Different configuration of λ generates different summaries

We compute the Pareto optimal set of configurations and use them to generate the reference summaries

Imp vs Continuity (Eg. Soccer_18)

Continuity

- 146-147-148 (Goal)
- 468-469-470 (Goal)
- 576-577-578 (Goal)
- 686-687-688 (Goal)

• 688 (Goal) • 804 (Save)

• 2 (Kick Off)

• 83 (Save)

• 147 (Goal)

• 383 (Save)

• 469 (Goal)

• 555 (Save)

• 578 (Goal)

- 843 (Save)
- 990 (Save)
- 1142 (Save)

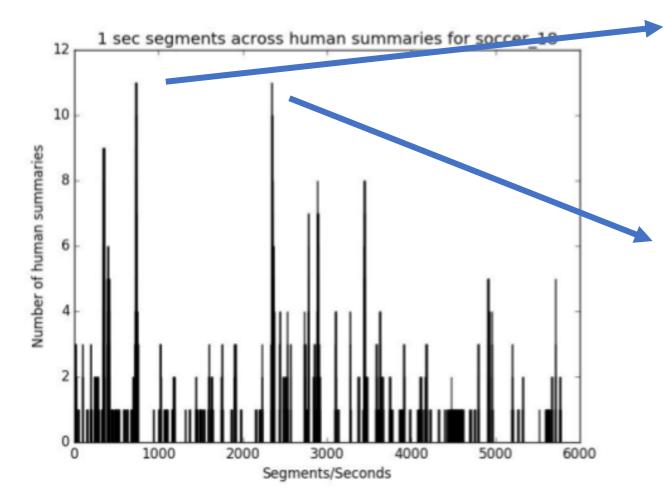
Simple Recipe for a Better Model

$$y^* = \operatorname*{argmax}_{y \subseteq Y_v, |y| \le k} o(x_v, y)$$

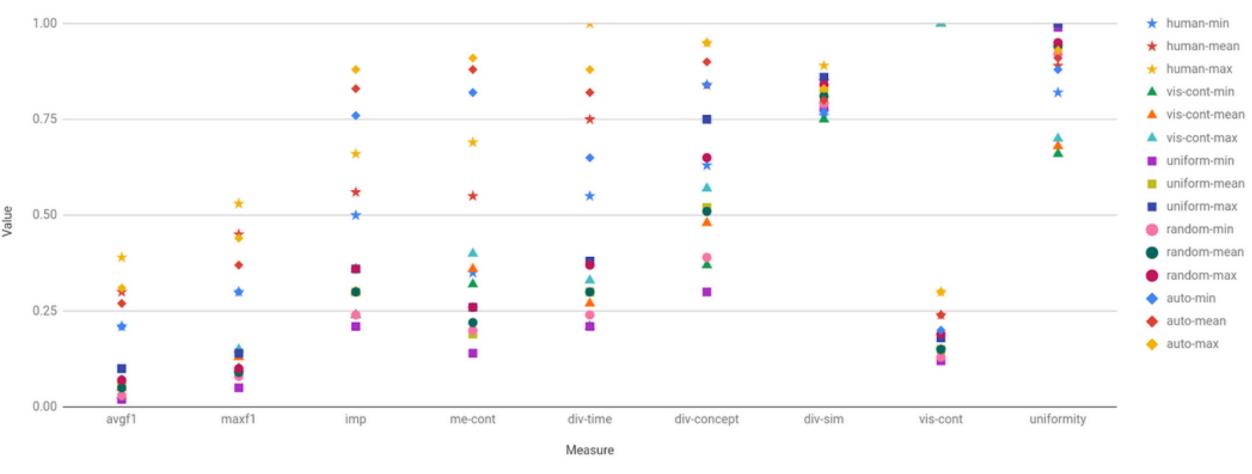
$$o(x_v, y) = w^T f(x_v, y)$$

$$\min_{w \ge 0} \frac{1}{N} \sum_{n=1}^{N} L_n(w) \cdot$$
$$L_n(w) = \max_{y \subseteq Y_v^n} (w^T f(x_v^n, y) + l_n(y)) - w^T f(x_v^n, y_{gt}^n)$$

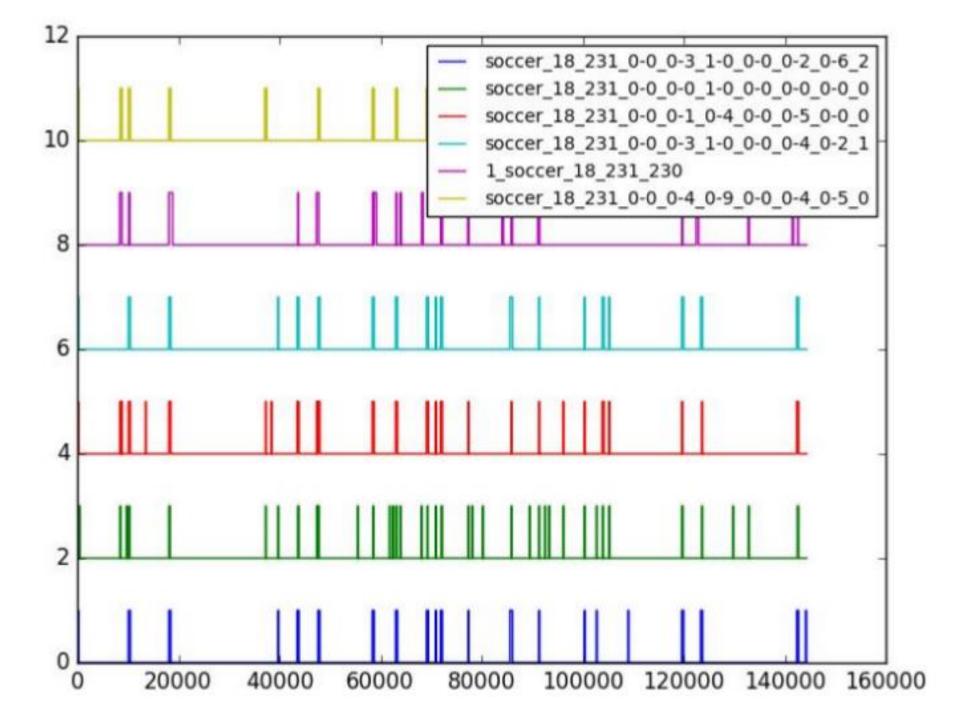
Consistency and InConsistency in Human Summaries



Behavior of measures for different summaries of Soccer



- Automatic summaries are at par with human summaries and are much better than uniform, random or vis-cont baselines
- Vanilla diversity doesn't seem to be a good evaluation measure for Soccer videos



Domain	Technique	AF1	MF1	IMP	MC	DT	DC	DSi
Soccer	Auto	59.3	93.3	83.2	84.3	82.6	85.9	76.2
	DR-DSN	2.8	8.9	23.7	20.3	23.2	30.4	83.4
	VASNET	28.4	43.4	63	49.3	62.1	67.4	75.2
	vsLSTM	31.9	48.2	62.2	60.1	62	69.5	76.5
	Ours	32.6	50.3	64.2	62.6	63.4	72.2	78.7
	Random	3.4	9.3	25.7	18.5	25.5	39.2	80.5
Friends	AUTO	66.3	96.9	87.8	84.6	80.3	89.8	83.1
	DR-DSN	4.3	9.4	19.1	6.9	65.7	51.5	98.5
	VASNET	17	29.6	41	39.3	49	60.6	86.7
	vsLSTM	15.5	27.2	40.4	39.2	64.7	59	91.1
	Ours	17.4	31.2	42.5	40.5	50.2	64	90.3
	Random	7.7	17.9	31.5	19.8	34.8	45.2	85.9
Surveillance	Auto	62.4	96.8	81.8	83.2	78.6	98	85.2
	DR-DSN	10	17.7	33.6	20.2	21.8	54.5	57.2
	VASNET	19.4	31.4	39.5	42.6	28.4	65.4	37.6
	vsLSTM	10.3	23.6	34.4	18.4	22.8	55.2	58.4
	Ours	20.5	32.6	41.7	44.3	29.6	68.2	38.5
	Random	3.9	8	16.6	12	15.3	49.4	69.4
TechTalk	Auto	64.7	91.5	79.8	-	80.5	88.4	94
	DR-DSN	13.5	22.5	49.3	-	24.8	29.9	35.2
	VASNET	18.2	35.7	52.1	-	47.3	43.3	43.2
	vsLSTM	15.1	32.2	60.3	-	38.8	35.3	41.7
	Ours	18.7	37.5	53.2	-	50	45.8	45.5
	Random	4.5	9.7	38.5	-	28	44	40.6
Birthday	Auto	67.3	97.2	89.7	88.6	68.1	90.8	81.3
	DR-DSN	8.1	14.2	54.7	14.1	79.4	63.6	74.9
	VASNET	21.6	37.6	50.1	30	36.2	47	48.7
	vsLSTM	27.3	42.1	72.1	57.2	59.6	67.1	73.6
	Ours	28	44.3	74.8	60.3	62	69.5	77.6
	Random	6.9	14.2	51.8	16.9	49.2	54.8	70.3
Wedding	Auto	55.4	94.4	83.9	74.7	67	88	85.7
	DR-DSN	4.2	8.9	40.7	14.4	76.6	62	88.4
	VASNET	4.5	14.4	46.5	22	44	52.7	84.9
	vsLSTM	9	17.3	50.2	29.5	50.1	56.9	80.7
	Ours	9.4	17.9	52.8	30.3	51.8	58.6	82.8
	Random	3.5	10	41.1	16.3	40.6	51.6	80

Thank You

Realistic Video Summarization through VISIOCITY: A New Benchmark and Evaluation Framework

Vishal Kaushal¹, Suraj Kothawade², Rishabh Iyer², Ganesh Ramakrishnan¹ ¹Indian Institute of Technology Bombay, ²University of Texas at Dallas