ACM multimedia

DHANANI SCHOOL OF SCIENCE AND ENGINEERING

Personalized Audio Stories

Syeda Maryam Fatima, Marina Shehzad, Syed Sami Murtuza, Syeda Saleha Raza

01

Making Storytelling a Personalized Experience.

Motivation and Context

Mitigating the disconnect between working parents and their children

Innocuous use of smart devices

Reviving storytelling culture a

INTRODUCTION

Audio of the story in the target voice

This plays the generated audio

APPLICATION INTERFACE

Child's Walkthrough

04

Parent's Walkthrough

METHODOLGY

EXPERIMENTS

File	Spectrogram
Lin_1_MS27_SF15	Linear
Lin_2_MS17_SFALL	Linear
Lin_2_MS27_SF15	Linear

Lin_2_MS17_SFALL	Linear	2
Lin_2_MS27_SF15	Linear	2
Mel_1_MS27_SF11	Mel	1
Mel_2_MS27_FO4	Mel	2
Mel_2_MS27_SF15	Mel	2

Number of Target Audios

Layer(s)	Base	Target
1	MS-27	SF-15
2	MS-17	SF-ALL
2	MS-27	SF-15
1	MS-27	SF-11
2	MS-27	F-O-4
2	MS-27	SF-15

DISCUSSION

Gender Difference

Less Time

Small Input Dataset

FUTURE WORK

Languages and accents

Finding Similarity

Extending to more domains

Hotline

Applying filters to remove the noise added by CNN

REFERENCES

[1]. A Neural Algorithm of Artistic Style *by* Gatys, Ecker & Bethge

[2]. randomCNN-voice-transfer by mazzzystar (github)

[3]. Speech spectrograms using the fast Fourier transform by Oppenheim

[4]Younggun Lee, Taesu Kim, and Soo-Young Lee. 2018. Voice Imitating Text-to-Speech Neural Networks.arXiv preprint arXiv:1806.00927(2018).

[5]Marco Pasini. 2019. Voice Translation and Audio Style Transfer with GANs.Medium(Nov 2019). https://towardsdatascience.com/voice-translation-and-audio-style-transfer-with-gans-b63d58f61854

[6]Hossein Salehghaffari. 2018. Speaker Verification using Convolutional NeuralNetworks.arXiv preprint arXiv:1803.05427(2018). [7]Hideyuki Tachibana, Katsuya Uenoyama, and Shunsuke Aihara. 2018. Efficientlytrainable text-to-speech system based on deep convolutional networks withguided attention. In2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 4784–4788.

[8]Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, NavdeepJaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al.2017.Tacotron: Towards end-to-end speech synthesis.arXiv preprint arXiv:1703.10135(2017).
[9]Eric Grinstein, Ngoc Duong, Alexey Ozerov, and Patrick Pérez. 2018. Audio styletransfer. https://arxiv.org/abs/1710.11385
[10]WIRED Insider. 2018. How Lyrebird Uses AI to Find Its (Artificial) Voice. https://www.wired.com/brandlab/2018/10/lyrebird-uses-ai-find-artificial-voice/

[11]Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, Patrick Nguyen,Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu, et al.2018. Transfer learningfrom speaker verification to multispeaker text-to-speech synthesis. InAdvancesin neural information processing systems. 4480–4490.

THANK YOU

13