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Video summary: a short visual summary that encapsulates the flow of the story and 
the essential parts of the full-length video 

 

Original video  
 

Video summary (storyboard)  

Problem statement 
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Problem statement 

General applications of video summarization 

⚫ Professional CMS: effective indexing, 
browsing, retrieval & promotion of media 
assets! 

⚫ Video sharing platforms: improved viewer 
experience, enhanced viewer engagement & 
increased content consumption! 

⚫ However, different distribution channels have different requirements / restrictions w.r.t. the 
video content duration (e.g. optimal Twitter videos < 45 sec.; ideal YouTube videos < 2 min.) 
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Related work 

Deep-learning approaches 

⚫ CNN-based methods that extract and use video semantics to identify important video parts 
based on sequence labeling [49], self-attention networks [18], or video-level metadata [44, 46]  

⚫ RNN-based approaches that capture temporal dependency over the video frames, using  
⚫ e.g. LSTMs for keyframe selection [64]  
⚫ hierarchies of LSTMs to identify the video structure and select key-fragments [70, 71] 
⚫ combinations of LSTMs with DTR units and GANs to capture long-range frame dependency [67]  
⚫ attention-based encoder-decoders [22, 28], or memory-augmented networks [19] 

⚫ Unsupervised methods that do not rely on human-annotations, and build summaries 
⚫ using adversarial learning objectives (GANs) to minimize the distance between training videos and a 

distribution of their summarizations [40], or to maximize mutual information between the created 
summary and the original video [60] 

⚫ through a decision-making process that is learned via RL and reward functions [73]  
⚫ by learning to extract key motions of appearing objects [68] 
⚫ by learning a “video-to-summary” mapping from unpaired edited summaries available online [48] 
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Motivation and reasoning 

Disadvantages of supervised learning 

⚫ Restricted amount of annotated data is available for supervised training of a video 
summarization method 

⚫ Highly-subjective nature of video summarization (relying on viewer’s demands and aesthetics); 
there is no “ideal” or commonly accepted summary that could be used for training an algorithm 

Advantages of unsupervised learning 

⚫ No need for learning data; avoid laborious and time-demanding labeling of video data 

⚫ Adaptability to different types of video; summarization is learned based on the video content 
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Developed approach 

⚫ Starting point: the SUM-GAN architecture  

⚫ Main idea: build a keyframe selection mechanism 
by minimizing the distance between the deep 
representations of the original video and a 
reconstructed version of it based on the selected 
key-frames 

⚫ Problem: how to define a good distance? 

⚫ Solution: use a trainable discriminator network! 

⚫ Goal: train the Summarizer to maximally confuse 
the Discriminator when distinguishing the original 
from the reconstructed video 
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Building on adversarial learning 
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Developed approach 

⚫ New model: the SUM-GAN-sl architecture 
⚫ Contains a linear compression layer that reduces: 

⚫ The size of the CNN feature vectors from 1024 
to 500 

⚫ Thus also the number of trainable parameters 
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Building on adversarial learning 
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⚫ New model: the SUM-GAN-sl architecture 
⚫ Follows an incremental and fine-grained approach to training the model’s components 
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Building on adversarial learning 



retv-project.eu @ReTV_EU @ReTVproject retv-project retv_project 

Experiments 
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Datasets 

⚫ SumMe (https://gyglim.github.io/me/vsum/index.html#benchmark) 
⚫ 25 videos capturing multiple events (e.g. cooking and sports) 
⚫ video length: 1.6 to 6.5 min 
⚫ annotation: fragment-based video summaries 

 
 
 

⚫ TVSum (https://github.com/yalesong/tvsum) 
⚫ 50 videos from  10 categories of TRECVid MED task 
⚫ video length: 1 to 5 min 
⚫ annotation: frame-level importance scores 

https://gyglim.github.io/me/vsum/index.html
https://github.com/yalesong/tvsum
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Evaluation protocol 

⚫ The generated summary should not exceed 15% of the video length  

⚫ Similarity between automatically generated (A) and ground-truth (G) summary is expressed 
by the F-Score (%), with (P)recision and (R)ecall measuring the temporal overlap (∩) (|| || 
means duration)  

 
 

⚫ Typical metrics for computing Precision and Recall at the frame-level  
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Evaluation protocol 

⚫ Slight but important distinction w.r.t. what is eventually used as ground-truth summary  

⚫ Most used approach (by [16, 18, 19, 29, 48, 49, 64, 61, 70, 71, 73, 74])  
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Evaluation protocol 

⚫ Slight but important distinction w.r.t. what is eventually used as ground-truth summary  

⚫ Most used approach (by [16, 18, 19, 29, 48, 49, 64, 61, 70, 71, 73, 74])  

F-Score1 
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Evaluation protocol 

⚫ Slight but important distinction w.r.t. what is eventually used as ground-truth summary  

⚫ Most used approach (by [16, 18, 19, 29, 48, 49, 64, 61, 70, 71, 73, 74])  

F-Score2 

F-Score1 
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Evaluation protocol 

⚫ Slight but important distinction w.r.t. what is eventually used as ground-truth summary  

⚫ Most used approach (by [16, 18, 19, 29, 48, 49, 64, 61, 70, 71, 73, 74])  

F-ScoreN 

F-Score2 

F-Score1 
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Evaluation protocol 

⚫ Slight but important distinction w.r.t. what is eventually used as ground-truth summary  

⚫ Most used approach (by [16, 18, 19, 29, 48, 49, 64, 61, 70, 71, 73, 74])  

F-ScoreN 

F-Score2 

F-Score1 

SumMe: TVSum: 
N 
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Evaluation protocol 

⚫ Slight but important distinction w.r.t. what is eventually used as ground-truth summary  

⚫ Alternative approach (used in [22, 28, 40, 58, 60, 67])  
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Evaluation protocol 

⚫ Slight but important distinction w.r.t. what is eventually used as ground-truth summary  

⚫ Alternative approach (used in [22, 28, 40, 58, 60, 67])  

F-Score 
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⚫ To get insights about the efficiency of the used datasets and metrics, we examined:  
⚫ the efficiency of a randomly generated summary (frames' importance scores were defined based 

on a uniform distribution of probabilities, and the experiment was performed 100 times)  
⚫ the human performance, i.e. how well a human annotator would perform based on the preferences 

of the remaining annotators  
⚫ the highest performance on TVSum according to the best user summary (with the highest overlap) 

for each video of the dataset (best for SumMe is 100%)  
 
 
 

 

 

⚫ Results consistent with the findings of a recent CVPR paper ([41]) 

Experiments 
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Preliminary study on summarization datasets 
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⚫ Step 1: Assessing the impact of regularization factor σ  
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Evaluation outcomes 

Findings 

⚫ Value of σ affects the models’ performance and needs fine-
tuning  

⚫ Too small and too large values lead to reduced efficiency, and 
only a specific range of values results in good performance 

⚫ Fine-tuning is dataset-dependent as the highest performance is 
achieved for different values of σ in each dataset 
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⚫ Step 2: Selecting the best configuration 

 

 

 

Experiments 
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Evaluation outcomes 

 

Learning curves 
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Findings 

⚫ A few SoA methods are comparable (or even worse) with a random summary generator 

⚫ Best method on SumMe (UnpairedVSN) performs slightly better than our method, and it is 
less competitive on TVSum 

⚫ Best method on TVSum shows random-level performance on SumMe (seems to be dataset-
tailored) 

⚫ SUM-GAN-sl performs consistently well in both datasets and is the most competitive one 

⚫ Step 3: Comparison with SoA unsupervised 
approaches based on multiple user summaries  

Experiments 
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Evaluation outcomes 
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Findings 

⚫ Best methods in TVSum (MAVS & Tessellationsup) are highly-adapted to this dataset, as they 
exhibit random-level performance on SumMe 

⚫ Only a few supervised methods clearly surpass the performance of a randomly-generated 
summary on both datasets, with VASNet being the best among them 

⚫ Their performance ranges in [44.1 - 49.7] on SumMe, and in [56.1 - 61.4] on TVSum 

⚫ The performance of SUM-GAN-sl makes our unsupervised method comparable with SoA 
supervised techniques for video summarization 

 

⚫ Step 4: Comparison with SoA 
supervised approaches based 
on multiple user summaries  

Experiments 
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Evaluation outcomes 
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Findings 

⚫ Model’s performance is affected by the value of σ 
in a way similar to the one reported in [40] 

⚫ Step 5: Comparison with SoA approaches based on single ground-truth summaries  

⚫ Impact of regularization factor σ 

Experiments 

28 

Evaluation outcomes 

⚫ Τhe effect of this hyper-parameter depends on the used evaluation approach (best performance 
when using multiple human summaries was observed for σ = 0.1) 

⚫ SUM-GAN-sl clearly outperforms the original SUM-GAN model on both datasets 
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Findings 

⚫ Best version of SUM-GAN-sl (observed for σ = 0.5) 
exceeds the performance of all other techniques 
(both supervised and unsupervised ones) that 
follow this evaluation protocol 

⚫ Step 5: Comparison with SoA approaches based on single ground-truth summaries  

Experiments 
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Evaluation outcomes 

Unsupervised approaches 
marked with an asterisk  
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30 

Full video Generated summary 
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⚫ Summary 
⚫ Conducted a study to assess and advance the effectiveness of unsupervised video summarization based 

on adversarial learning 
⚫ Focused on the SUM-GAN model and suggested a new training approach to advance the learning 

efficiency of the adversarial module of the architecture 
⚫ Examined the evaluation protocols and metrics, and made estimates on the possible performance on two 

datasets and the suitability of the used metrics 
⚫ Comparative evaluations with SoA showed that our model is among the best unsupervised methods and 

comparable with supervised algorithms too 

⚫ Next steps 
⚫ Further improve our model by exploiting the efficiency of attention networks and the training capacity of 

reinforcement learning approaches 
⚫ Extend our model with mechanisms that capture the temporal structure of the video to support multi-

level video summarization  
⚫ Investigate methods for video summarization tailored to the targeted audience and distribution channel 

(apply rules about the content of the summary; integrate a human-critic in the pipeline) 

Summary and next steps 
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Thank you for your attention! 
Questions? 

 
Vasileios Mezaris, bmezaris@iti.gr 

 
Code and documentation publicly available at:  
https://github.com/e-apostolidis/SUM-GAN-sl 
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